Home
Class 12
MATHS
If A=lim(x to 0) (sin^(-1)(sinx))/(cos^(...

If `A=lim_(x to 0) (sin^(-1)(sinx))/(cos^(-1)(cosx))and B=lim_(x to 0)([|x|])/(x),` then

A

A = 1

B

A does not exist

C

B = 0

D

B = 1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the limits \( A \) and \( B \) as defined in the question. ### Step 1: Evaluate \( A = \lim_{x \to 0} \frac{\sin^{-1}(\sin x)}{\cos^{-1}(\cos x)} \) 1. **Understanding the Functions**: - The function \( \sin^{-1}(\sin x) \) returns \( x \) for \( x \) in the interval \([- \frac{\pi}{2}, \frac{\pi}{2}]\). As \( x \to 0 \), this simplifies to \( \sin^{-1}(\sin x) = x \). - The function \( \cos^{-1}(\cos x) \) returns \( x \) for \( x \) in the interval \([0, \pi]\). As \( x \to 0 \), this simplifies to \( \cos^{-1}(\cos x) = x \). 2. **Substituting in the Limit**: \[ A = \lim_{x \to 0} \frac{x}{x} \] 3. **Simplifying the Expression**: \[ A = \lim_{x \to 0} 1 = 1 \] ### Step 2: Evaluate \( B = \lim_{x \to 0} \frac{|x|}{x} \) 1. **Understanding the Absolute Value**: - The expression \( \frac{|x|}{x} \) behaves differently depending on whether \( x \) approaches 0 from the positive or negative side. - If \( x \to 0^+ \) (from the right), \( |x| = x \), so \( \frac{|x|}{x} = 1 \). - If \( x \to 0^- \) (from the left), \( |x| = -x \), so \( \frac{|x|}{x} = -1 \). 2. **Finding the Limit**: - Since the left-hand limit (as \( x \to 0^- \)) is -1 and the right-hand limit (as \( x \to 0^+ \)) is 1, the limit does not exist. ### Final Results: - \( A = 1 \) - \( B \) does not exist. ### Conclusion: - The correct options are: - \( A = 1 \) (Option 1) - \( B \) does not exist (Option 2)

To solve the problem, we need to evaluate the limits \( A \) and \( B \) as defined in the question. ### Step 1: Evaluate \( A = \lim_{x \to 0} \frac{\sin^{-1}(\sin x)}{\cos^{-1}(\cos x)} \) 1. **Understanding the Functions**: - The function \( \sin^{-1}(\sin x) \) returns \( x \) for \( x \) in the interval \([- \frac{\pi}{2}, \frac{\pi}{2}]\). As \( x \to 0 \), this simplifies to \( \sin^{-1}(\sin x) = x \). - The function \( \cos^{-1}(\cos x) \) returns \( x \) for \( x \) in the interval \([0, \pi]\). As \( x \to 0 \), this simplifies to \( \cos^{-1}(\cos x) = x \). ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|20 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Exercises (Single Correct Answer Type)|76 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

lim_(xrarr0) (x^(2)-x)/(sinx)

Evaluate lim_(x to 0) (sinx-2)/(cosx-1).

1. lim_(x rarr0)(sin^(-1)x-sin x)/(x^(3))

lim_(x to 0) (cos 2x-1)/(cos x-1)

lim_(x rarr0)(sin^2x)/(1-cosx)

lim_(x->0) (2e^sinx-e^(-sinx)-1)/(x^2+2x)

lim_(x to 0) (1 - cos x)/(x sqrt(x^(2))

Evaluate lim_(x to 0) (sinx+log(1-x))/(x^(2)).

lim_(x to 0) (sin x + cos 3x)^(2//x) =

Evaluate lim_(x to oo) (sinx^(0))/(x).

CENGAGE ENGLISH-LIMITS-Multiple Correct Answers Type
  1. Let f(x)={{:(x^(n)sin(1//x^(2))","xne0),(0", "x=0):},...

    Text Solution

    |

  2. If L=lim(xto0) (1)/(x^(3))((1)/(sqrt(1+x))-(1+ax)/(1+bx)) exists,then

    Text Solution

    |

  3. Which of the following is true ({.} denotes the fractional part of the...

    Text Solution

    |

  4. Which of the following is/are correct?

    Text Solution

    |

  5. If lim(xto1) (2-x+a[x-1]+b[1+x]) exists, then a and b can take the val...

    Text Solution

    |

  6. L=("lim")(xveca)(|2sinx-1|)/(2sinx-1)dotT h e n limit does not exist ...

    Text Solution

    |

  7. Let f(x)=lim(ntooo) (x)/(x^(2n)+1). Then f has

    Text Solution

    |

  8. lim(ntooo) (-3n+(-1)^(n))/(4n-(-1)^(n)) is equal to (n inN)

    Text Solution

    |

  9. Given a real-valued function f such that f(x)={(tan^2{x})/((x^2-[x]^2)...

    Text Solution

    |

  10. If f(x)=(3x^2+a x+a+1)/(x^2+x-2), then which of the following can be c...

    Text Solution

    |

  11. The value of lim(ntooo) (1)/(1+nsin^(2)nx)" can be " (n inN)

    Text Solution

    |

  12. Lim x tending 5f(x) = (x^2-9x+20)/(x-[x]) where [x] denotes greatest i...

    Text Solution

    |

  13. Given lim(x to 0)(f(x))/(x^(2))=2, where [.] denotes the greatest inte...

    Text Solution

    |

  14. If f(a)=lim(xto2)(sin^(x)a+cos^(x)a)^((1)/((x-2)))" for "ain[0,(pi)/(2...

    Text Solution

    |

  15. Let L=("lim")(xvec0)(a-sqrt(a^2-x^2)-(x^2)/4)/(x^4),a > 0. IfLi sfin i...

    Text Solution

    |

  16. Let f(x) = ((1 - x(1+ |1-x | )) /(|1-x|)) cos(1/(1-x)) for x!=1

    Text Solution

    |

  17. If A=lim(x to 0) (sin^(-1)(sinx))/(cos^(-1)(cosx))and B=lim(x to 0)([|...

    Text Solution

    |

  18. If f(x)=x((e^(|x|+[x])-2)/(|x|+[x])) then (where [.] represent the gre...

    Text Solution

    |

  19. Assume that lim(thetararr-1) f(theta) exists and (theta^(2)+theta-2)/(...

    Text Solution

    |

  20. Let f(x)=lim(nrarroo) (tan^(-1)(tanx))/(1+(log(x)x)^(n)),x ne(2n+1)(pi...

    Text Solution

    |