Home
Class 12
MATHS
Assume that lim(thetararr-1) f(theta) ex...

Assume that `lim_(thetararr-1) f(theta)` exists and `(theta^(2)+theta-2)/(theta+3)le(f(theta))/(theta^(2))le(theta^(2)+2theta-1)/(theta+3)` holds for certain interval containing the point `theta=-1 " then "lim_(thetararr-1) f(theta)`

A

is equal to `f(-1)`

B

is equal to 1

C

is non-existent

D

is equal to `-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given inequalities and apply the Squeeze Theorem (also known as the Sandwich Theorem) to find the limit of \( f(\theta) \) as \( \theta \) approaches \(-1\). ### Step-by-Step Solution: 1. **Understand the Given Inequalities:** We have the inequalities: \[ \frac{\theta^2 + \theta - 2}{\theta + 3} \leq \frac{f(\theta)}{\theta^2} \leq \frac{\theta^2 + 2\theta - 1}{\theta + 3} \] 2. **Substituting \(\theta = -1\):** We will substitute \(\theta = -1\) into both sides of the inequality to find the bounds for \( f(-1) \). - For the left side: \[ \frac{(-1)^2 + (-1) - 2}{-1 + 3} = \frac{1 - 1 - 2}{2} = \frac{-2}{2} = -1 \] - For the right side: \[ \frac{(-1)^2 + 2(-1) - 1}{-1 + 3} = \frac{1 - 2 - 1}{2} = \frac{-2}{2} = -1 \] 3. **Establishing the Bounds:** From the calculations, we have: \[ -1 \leq \frac{f(-1)}{(-1)^2} \leq -1 \] This simplifies to: \[ -1 \leq f(-1) \leq -1 \] Therefore, we can conclude: \[ f(-1) = -1 \] 4. **Applying the Squeeze Theorem:** Since we have established that: \[ \lim_{\theta \to -1} \frac{\theta^2 + \theta - 2}{\theta + 3} = -1 \quad \text{and} \quad \lim_{\theta \to -1} \frac{\theta^2 + 2\theta - 1}{\theta + 3} = -1 \] By the Squeeze Theorem, we can conclude that: \[ \lim_{\theta \to -1} f(\theta) = f(-1) = -1 \] ### Final Answer: Thus, we find that: \[ \lim_{\theta \to -1} f(\theta) = -1 \]

To solve the problem, we need to analyze the given inequalities and apply the Squeeze Theorem (also known as the Sandwich Theorem) to find the limit of \( f(\theta) \) as \( \theta \) approaches \(-1\). ### Step-by-Step Solution: 1. **Understand the Given Inequalities:** We have the inequalities: \[ \frac{\theta^2 + \theta - 2}{\theta + 3} \leq \frac{f(\theta)}{\theta^2} \leq \frac{\theta^2 + 2\theta - 1}{\theta + 3} ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|20 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Exercises (Single Correct Answer Type)|76 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Prove that : (tan^(2)theta)/(1+tan^(2)theta)+(cot^(2)theta)/(1+cot^(2)theta)=1

Prove that (tan^(2)2theta-tan^(2)theta)/(1-tan^(2)2thetatan^(2)theta)=tan 3 theta tan theta .

If "tan" 2 theta "tan" theta =1, "then" theta =

(sin^(3) theta-cos^(3) theta)/(sin theta - cos theta)- (cos theta)/sqrt(1+ cot^(2) theta)-2 tan theta cot theta=-1 if

(2 sin theta*cos theta - cos theta)/(1-sin theta+sin^2 theta-cos^2 theta) = cot theta

(1+sin 2theta+cos 2theta)/(1+sin2 theta-cos 2 theta) =

If theta=pi/(4n) then the value of tanthetatan(2theta)tan(3theta)....tan((2n-1)theta) is

Prove that (tan theta)/(sec theta -1)+ (tan theta)/(sec theta +1) = 2 cosec\ theta

1 + (cos 2 theta + cos 6 theta)/(cos 4 theta) = (sin 3 theta)/(sin theta).

(1+sin2theta+cos2theta)/(1+sin2theta-cos2theta)=?

CENGAGE ENGLISH-LIMITS-Multiple Correct Answers Type
  1. Let f(x)={{:(x^(n)sin(1//x^(2))","xne0),(0", "x=0):},...

    Text Solution

    |

  2. If L=lim(xto0) (1)/(x^(3))((1)/(sqrt(1+x))-(1+ax)/(1+bx)) exists,then

    Text Solution

    |

  3. Which of the following is true ({.} denotes the fractional part of the...

    Text Solution

    |

  4. Which of the following is/are correct?

    Text Solution

    |

  5. If lim(xto1) (2-x+a[x-1]+b[1+x]) exists, then a and b can take the val...

    Text Solution

    |

  6. L=("lim")(xveca)(|2sinx-1|)/(2sinx-1)dotT h e n limit does not exist ...

    Text Solution

    |

  7. Let f(x)=lim(ntooo) (x)/(x^(2n)+1). Then f has

    Text Solution

    |

  8. lim(ntooo) (-3n+(-1)^(n))/(4n-(-1)^(n)) is equal to (n inN)

    Text Solution

    |

  9. Given a real-valued function f such that f(x)={(tan^2{x})/((x^2-[x]^2)...

    Text Solution

    |

  10. If f(x)=(3x^2+a x+a+1)/(x^2+x-2), then which of the following can be c...

    Text Solution

    |

  11. The value of lim(ntooo) (1)/(1+nsin^(2)nx)" can be " (n inN)

    Text Solution

    |

  12. Lim x tending 5f(x) = (x^2-9x+20)/(x-[x]) where [x] denotes greatest i...

    Text Solution

    |

  13. Given lim(x to 0)(f(x))/(x^(2))=2, where [.] denotes the greatest inte...

    Text Solution

    |

  14. If f(a)=lim(xto2)(sin^(x)a+cos^(x)a)^((1)/((x-2)))" for "ain[0,(pi)/(2...

    Text Solution

    |

  15. Let L=("lim")(xvec0)(a-sqrt(a^2-x^2)-(x^2)/4)/(x^4),a > 0. IfLi sfin i...

    Text Solution

    |

  16. Let f(x) = ((1 - x(1+ |1-x | )) /(|1-x|)) cos(1/(1-x)) for x!=1

    Text Solution

    |

  17. If A=lim(x to 0) (sin^(-1)(sinx))/(cos^(-1)(cosx))and B=lim(x to 0)([|...

    Text Solution

    |

  18. If f(x)=x((e^(|x|+[x])-2)/(|x|+[x])) then (where [.] represent the gre...

    Text Solution

    |

  19. Assume that lim(thetararr-1) f(theta) exists and (theta^(2)+theta-2)/(...

    Text Solution

    |

  20. Let f(x)=lim(nrarroo) (tan^(-1)(tanx))/(1+(log(x)x)^(n)),x ne(2n+1)(pi...

    Text Solution

    |