If `a in I`, then value of a for which `lim_(xrarra) (tan([x^(2)]-[x]^(3)))/((x-a)^(3))` exists finitely, is /are
A
0
B
1
C
`-1`
D
2
Text Solution
AI Generated Solution
The correct Answer is:
To solve the limit problem, we need to find the values of \( a \) for which the limit
\[
\lim_{x \to a} \frac{\tan(\lfloor x^3 \rfloor - \lfloor x \rfloor^3)}{(x - a)^3}
\]
exists finitely, where \( a \) is an integer.
### Step 1: Define the function
Let
\[
f(x) = \tan(\lfloor x^3 \rfloor - \lfloor x \rfloor^3)
\]
We need to evaluate \( f(a) \) and the left-hand and right-hand limits as \( x \) approaches \( a \).
### Step 2: Calculate \( f(a) \)
Substituting \( x = a \):
\[
f(a) = \tan(\lfloor a^3 \rfloor - \lfloor a \rfloor^3)
\]
Since \( a \) is an integer, we have:
\[
\lfloor a^3 \rfloor = a^3 \quad \text{and} \quad \lfloor a \rfloor = a
\]
Thus,
\[
f(a) = \tan(a^3 - a^3) = \tan(0) = 0
\]
### Step 3: Calculate the right-hand limit (RHL)
For the right-hand limit as \( x \to a^+ \):
\[
\lim_{x \to a^+} f(x) = \lim_{x \to a^+} \tan(\lfloor x^3 \rfloor - \lfloor x \rfloor^3)
\]
As \( x \) approaches \( a \) from the right, \( \lfloor x^3 \rfloor = a^3 \) and \( \lfloor x \rfloor = a \). Therefore:
\[
\lim_{x \to a^+} f(x) = \tan(a^3 - a^3) = \tan(0) = 0
\]
### Step 4: Calculate the left-hand limit (LHL)
For the left-hand limit as \( x \to a^- \):
\[
\lim_{x \to a^-} f(x) = \lim_{x \to a^-} \tan(\lfloor x^3 \rfloor - \lfloor x \rfloor^3)
\]
As \( x \) approaches \( a \) from the left, \( \lfloor x^3 \rfloor = a^3 - 1 \) (since \( x^3 < a^3 \)) and \( \lfloor x \rfloor = a - 1 \). Thus:
\[
\lim_{x \to a^-} f(x) = \tan((a^3 - 1) - (a - 1)^3)
\]
Expanding \( (a - 1)^3 \):
\[
(a - 1)^3 = a^3 - 3a^2 + 3a - 1
\]
So,
\[
\lim_{x \to a^-} f(x) = \tan((a^3 - 1) - (a^3 - 3a^2 + 3a - 1)) = \tan(3a^2 - 3a)
\]
### Step 5: Set the limits equal for existence
For the limit to exist, we need:
\[
\lim_{x \to a^-} f(x) = \lim_{x \to a^+} f(x) = f(a) = 0
\]
This means:
\[
\tan(3a(a - 1)) = 0
\]
The tangent function is zero when its argument is a multiple of \( \pi \):
\[
3a(a - 1) = k\pi \quad \text{for some integer } k
\]
### Step 6: Solve for \( a \)
The simplest case is when \( 3a(a - 1) = 0 \):
1. \( a = 0 \)
2. \( a - 1 = 0 \Rightarrow a = 1 \)
Thus, the values of \( a \) for which the limit exists finitely are:
\[
a = 0 \quad \text{and} \quad a = 1
\]
### Final Answer
The values of \( a \) for which the limit exists finitely are \( a = 0 \) and \( a = 1 \).
---
To solve the limit problem, we need to find the values of \( a \) for which the limit
\[
\lim_{x \to a} \frac{\tan(\lfloor x^3 \rfloor - \lfloor x \rfloor^3)}{(x - a)^3}
\]
exists finitely, where \( a \) is an integer.
...