Home
Class 12
MATHS
If a in I, then value of a for which lim...

If `a in I`, then value of a for which `lim_(xrarra) (tan([x^(2)]-[x]^(3)))/((x-a)^(3))` exists finitely, is /are

A

0

B

1

C

`-1`

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem, we need to find the values of \( a \) for which the limit \[ \lim_{x \to a} \frac{\tan(\lfloor x^3 \rfloor - \lfloor x \rfloor^3)}{(x - a)^3} \] exists finitely, where \( a \) is an integer. ### Step 1: Define the function Let \[ f(x) = \tan(\lfloor x^3 \rfloor - \lfloor x \rfloor^3) \] We need to evaluate \( f(a) \) and the left-hand and right-hand limits as \( x \) approaches \( a \). ### Step 2: Calculate \( f(a) \) Substituting \( x = a \): \[ f(a) = \tan(\lfloor a^3 \rfloor - \lfloor a \rfloor^3) \] Since \( a \) is an integer, we have: \[ \lfloor a^3 \rfloor = a^3 \quad \text{and} \quad \lfloor a \rfloor = a \] Thus, \[ f(a) = \tan(a^3 - a^3) = \tan(0) = 0 \] ### Step 3: Calculate the right-hand limit (RHL) For the right-hand limit as \( x \to a^+ \): \[ \lim_{x \to a^+} f(x) = \lim_{x \to a^+} \tan(\lfloor x^3 \rfloor - \lfloor x \rfloor^3) \] As \( x \) approaches \( a \) from the right, \( \lfloor x^3 \rfloor = a^3 \) and \( \lfloor x \rfloor = a \). Therefore: \[ \lim_{x \to a^+} f(x) = \tan(a^3 - a^3) = \tan(0) = 0 \] ### Step 4: Calculate the left-hand limit (LHL) For the left-hand limit as \( x \to a^- \): \[ \lim_{x \to a^-} f(x) = \lim_{x \to a^-} \tan(\lfloor x^3 \rfloor - \lfloor x \rfloor^3) \] As \( x \) approaches \( a \) from the left, \( \lfloor x^3 \rfloor = a^3 - 1 \) (since \( x^3 < a^3 \)) and \( \lfloor x \rfloor = a - 1 \). Thus: \[ \lim_{x \to a^-} f(x) = \tan((a^3 - 1) - (a - 1)^3) \] Expanding \( (a - 1)^3 \): \[ (a - 1)^3 = a^3 - 3a^2 + 3a - 1 \] So, \[ \lim_{x \to a^-} f(x) = \tan((a^3 - 1) - (a^3 - 3a^2 + 3a - 1)) = \tan(3a^2 - 3a) \] ### Step 5: Set the limits equal for existence For the limit to exist, we need: \[ \lim_{x \to a^-} f(x) = \lim_{x \to a^+} f(x) = f(a) = 0 \] This means: \[ \tan(3a(a - 1)) = 0 \] The tangent function is zero when its argument is a multiple of \( \pi \): \[ 3a(a - 1) = k\pi \quad \text{for some integer } k \] ### Step 6: Solve for \( a \) The simplest case is when \( 3a(a - 1) = 0 \): 1. \( a = 0 \) 2. \( a - 1 = 0 \Rightarrow a = 1 \) Thus, the values of \( a \) for which the limit exists finitely are: \[ a = 0 \quad \text{and} \quad a = 1 \] ### Final Answer The values of \( a \) for which the limit exists finitely are \( a = 0 \) and \( a = 1 \). ---

To solve the limit problem, we need to find the values of \( a \) for which the limit \[ \lim_{x \to a} \frac{\tan(\lfloor x^3 \rfloor - \lfloor x \rfloor^3)}{(x - a)^3} \] exists finitely, where \( a \) is an integer. ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise Comprehension Type|4 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise ComprehensionType|2 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

If lim_(xrarr0)(sin2x-asinx)/(x^(3)) exists finitely, then the value of a is

Evaluate: lim_(xrarra) (sqrt(x)-sqrt(a))/(x-a)

The value of lim_(x rarr a) (2- a/x)^(tan ((pi x)/(2a))) is:

(i) lim_(x rarr0)(x-sin x)/(tan^(3)x)

The value of lim_(xrarr3) ((x^(3)+27)log_(e)(x-2))/(x^(2)-9) is

lim_(xrarr0) (3 tan3x-4 tan2x-tanx)/(4x^(2)tanx)

The value of lim_(xrarr oo) (3sqrt(x^3+x^2)-3sqrt(x^3-x^2)) , is

The value of lim_(xrarr-oo)(x^(2)tan((2)/(x)))/(sqrt(16x^(2)-x+1)) is equal to

The value of lim_(xrarrpi//4) (tan^(3)x-tanx)/(cos(x+(pi)/(4))) is

If L=lim_(xto0) (sinx+ae^(x)+be^(-x)+clog_(e)(1+x))/(x^(3)) exists finitely, then The value of L is