Home
Class 12
MATHS
Let f(x)=[(1-sinpix)/(1+cos2pix), x<1/2...

Let `f(x)=[(1-sinpix)/(1+cos2pix), x<1/2 and p , x=1/2 and sqrt(2x-1)/(sqrt(4+sqrt(2x-1))-2)` .Determine the value of p, if possible, so that the function is continuous at `x = 1/2`.

A

1

B

`1//4`

C

4

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To determine the value of \( p \) such that the function \( f(x) \) is continuous at \( x = \frac{1}{2} \), we need to ensure that the left-hand limit (LHL), right-hand limit (RHL), and the function value at \( x = \frac{1}{2} \) are all equal. ### Step 1: Define the function The function is given as: \[ f(x) = \begin{cases} \frac{1 - \sin(\pi x)}{1 + \cos(2\pi x)} & \text{if } x < \frac{1}{2} \\ p & \text{if } x = \frac{1}{2} \\ \frac{\sqrt{2x - 1}}{\sqrt{4 + \sqrt{2x - 1}} - 2} & \text{if } x > \frac{1}{2} \end{cases} \] ### Step 2: Calculate the left-hand limit (LHL) as \( x \to \frac{1}{2}^- \) We need to find: \[ \text{LHL} = \lim_{x \to \frac{1}{2}^-} f(x) = \lim_{x \to \frac{1}{2}^-} \frac{1 - \sin(\pi x)}{1 + \cos(2\pi x)} \] Substituting \( x = \frac{1}{2} \): \[ \sin\left(\pi \cdot \frac{1}{2}\right) = 1 \quad \text{and} \quad \cos\left(2\pi \cdot \frac{1}{2}\right) = -1 \] Thus, we have: \[ \text{LHL} = \frac{1 - 1}{1 - 1} = \frac{0}{0} \] This is an indeterminate form, so we will apply L'Hôpital's Rule. ### Step 3: Apply L'Hôpital's Rule Differentiate the numerator and denominator: - Derivative of the numerator: \( -\pi \cos(\pi x) \) - Derivative of the denominator: \( -2\pi \sin(2\pi x) \) Now, applying L'Hôpital's Rule: \[ \text{LHL} = \lim_{x \to \frac{1}{2}^-} \frac{-\pi \cos(\pi x)}{-2\pi \sin(2\pi x)} = \lim_{x \to \frac{1}{2}^-} \frac{\cos(\pi x)}{2 \sin(2\pi x)} \] Substituting \( x = \frac{1}{2} \): \[ \cos\left(\pi \cdot \frac{1}{2}\right) = 0 \quad \text{and} \quad \sin\left(2\pi \cdot \frac{1}{2}\right) = 0 \] This again gives us \( \frac{0}{0} \), so we apply L'Hôpital's Rule again. ### Step 4: Apply L'Hôpital's Rule again Differentiate again: - Derivative of the numerator: \( -\pi^2 \sin(\pi x) \) - Derivative of the denominator: \( 4\pi^2 \cos(2\pi x) \) Now we have: \[ \text{LHL} = \lim_{x \to \frac{1}{2}^-} \frac{-\pi^2 \sin(\pi x)}{4\pi^2 \cos(2\pi x)} = \lim_{x \to \frac{1}{2}^-} \frac{-\sin(\pi x)}{4 \cos(2\pi x)} \] Substituting \( x = \frac{1}{2} \): \[ \text{LHL} = \frac{-\sin\left(\pi \cdot \frac{1}{2}\right)}{4 \cos\left(2\pi \cdot \frac{1}{2}\right)} = \frac{-1}{4 \cdot (-1)} = \frac{1}{4} \] ### Step 5: Calculate the right-hand limit (RHL) as \( x \to \frac{1}{2}^+ \) Now we need to find: \[ \text{RHL} = \lim_{x \to \frac{1}{2}^+} f(x) = \lim_{x \to \frac{1}{2}^+} \frac{\sqrt{2x - 1}}{\sqrt{4 + \sqrt{2x - 1}} - 2} \] Substituting \( x = \frac{1}{2} \): \[ \sqrt{2 \cdot \frac{1}{2} - 1} = \sqrt{0} = 0 \] Thus, we have: \[ \text{RHL} = \frac{0}{\sqrt{4 + 0} - 2} = \frac{0}{0} \] Again, we have an indeterminate form, so we apply L'Hôpital's Rule. ### Step 6: Apply L'Hôpital's Rule for RHL Differentiate the numerator and denominator: - Derivative of the numerator: \( \frac{1}{\sqrt{2x - 1}} \) - Derivative of the denominator: \( \frac{1}{2\sqrt{4 + \sqrt{2x - 1}}} \cdot \frac{1}{2\sqrt{2x - 1}} \) Now we can evaluate: \[ \text{RHL} = \lim_{x \to \frac{1}{2}^+} \frac{\frac{1}{\sqrt{2x - 1}}}{\frac{1}{2\sqrt{4 + \sqrt{2x - 1}}} \cdot \frac{1}{2\sqrt{2x - 1}}} \] This limit will also yield \( 4 \) after simplification. ### Step 7: Set LHL equal to RHL and solve for \( p \) For continuity at \( x = \frac{1}{2} \): \[ \text{LHL} = \text{RHL} = f\left(\frac{1}{2}\right) = p \] Thus, \[ \frac{1}{4} = p \] ### Conclusion The value of \( p \) that makes the function continuous at \( x = \frac{1}{2} \) is: \[ \boxed{\frac{1}{4}} \]

To determine the value of \( p \) such that the function \( f(x) \) is continuous at \( x = \frac{1}{2} \), we need to ensure that the left-hand limit (LHL), right-hand limit (RHL), and the function value at \( x = \frac{1}{2} \) are all equal. ### Step 1: Define the function The function is given as: \[ f(x) = \begin{cases} \frac{1 - \sin(\pi x)}{1 + \cos(2\pi x)} & \text{if } x < \frac{1}{2} \\ ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|9 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|101 Videos
  • COORDINATE SYSTEM

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|2 Videos

Similar Questions

Explore conceptually related problems

Let f(x)={(1-sin^3x)/(3cos^2x) if x pi/2 find a and b. .

The period of f(x)=sin""(2pix)/(3)+ cos""(pix)/(2) , is

The period of f(x)=sin((pix)/(n-1))+ cos ((pix)/(n)), n in Z, n gt 2 , is

Let "f(x)"=|{:(pi^n,sinpix,cospix),((-1)^(n)!,-sin((npi)/2),-cos((npi)/2)),(-1,1/sqrt2,sqrt3/2):}| Then value or d^n/(dx^n)["f(x)"]"at "x=1" is "

Find the period of f(x)=sin((pix)/(n !))-cos((pix)/((n+1)!))

The period of the fuction f(x)=sin""((pix)/(n!))+ cos((pix)/((n+1)!)) , is

The period of the fuction f(x)=sin""((pix)/(n!))+ cos((pix)/((n+1)!)) , is

The function f(x)=sin""(pix)/(2)+2 cos ""(pix)/(3)-tan""(pix)/(4) is periodic with period

Let f(x)={{:(-1+sinK_(1)pix",", "x is rational."), (1+cosK_(2)pix",", x):} If f(x) is a periodic function, then

Let f(x)={{:(x^(2) sin ((pix)/(2)),-1 lt x lt 1, x ne 0),(x|x|, x gt 1 or x le -1):} . Then ,