Home
Class 12
MATHS
Let f(x)={{:(8^((1)/(x))",",xlt0,),(a[x]...

Let `f(x)={{:(8^((1)/(x))",",xlt0,),(a[x]",",a inR-{0}",",xge0):}` (where [.] denotes the greatest integer function).
Then f(x) is

A

continuous only at a finite number of points.

B

discontinuous at a finite number of points.

C

discontinuous at an infinite number of points.

D

discontinuous at x = 0.

Text Solution

AI Generated Solution

The correct Answer is:
To determine the continuity of the function \( f(x) \) defined as: \[ f(x) = \begin{cases} 8^{\frac{1}{x}} & \text{if } x < 0 \\ a \cdot [x] & \text{if } x \geq 0 \end{cases} \] where \( [x] \) denotes the greatest integer function, we need to analyze the function at the point \( x = 0 \) and at other integer points for \( x \geq 0 \). ### Step 1: Check continuity at \( x = 0 \) To check the continuity at \( x = 0 \), we need to evaluate the left-hand limit, right-hand limit, and the function value at \( x = 0 \). 1. **Left-hand limit as \( x \to 0^- \)**: \[ \lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} 8^{\frac{1}{x}} \] As \( x \) approaches \( 0 \) from the left, \( \frac{1}{x} \) approaches \( -\infty \), thus: \[ 8^{\frac{1}{x}} \to 0 \] So, \( \lim_{x \to 0^-} f(x) = 0 \). 2. **Right-hand limit as \( x \to 0^+ \)**: \[ \lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} a \cdot [x] \] Since \( [x] = 0 \) for \( x \) in the interval \( [0, 1) \): \[ \lim_{x \to 0^+} f(x) = a \cdot 0 = 0 \] 3. **Function value at \( x = 0 \)**: \[ f(0) = a \cdot [0] = a \cdot 0 = 0 \] Since all three values are equal: \[ \lim_{x \to 0^-} f(x) = \lim_{x \to 0^+} f(x) = f(0) = 0 \] Thus, \( f(x) \) is continuous at \( x = 0 \). ### Step 2: Check continuity at integer points \( x = n \) where \( n \in \mathbb{Z}^+ \) Now, we will check the continuity at \( x = 1 \) and \( x = 2 \). 1. **At \( x = 1 \)**: - **Left-hand limit**: \[ \lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} a \cdot [x] = a \cdot [1] = a \cdot 0 = 0 \] - **Right-hand limit**: \[ \lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} a \cdot [x] = a \cdot [1] = a \cdot 1 = a \] Since \( 0 \neq a \), \( f(x) \) is discontinuous at \( x = 1 \). 2. **At \( x = 2 \)**: - **Left-hand limit**: \[ \lim_{x \to 2^-} f(x) = \lim_{x \to 2^-} a \cdot [x] = a \cdot [2] = a \cdot 1 = a \] - **Right-hand limit**: \[ \lim_{x \to 2^+} f(x) = \lim_{x \to 2^+} a \cdot [x] = a \cdot [2] = a \cdot 2 = 2a \] Since \( a \neq 2a \) (unless \( a = 0 \)), \( f(x) \) is discontinuous at \( x = 2 \). ### Conclusion The function \( f(x) \) is continuous at \( x = 0 \) but discontinuous at every positive integer \( n \) where \( n \in \mathbb{Z}^+ \).

To determine the continuity of the function \( f(x) \) defined as: \[ f(x) = \begin{cases} 8^{\frac{1}{x}} & \text{if } x < 0 \\ a \cdot [x] & \text{if } x \geq 0 \end{cases} ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|9 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|101 Videos
  • COORDINATE SYSTEM

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|2 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=[|x|] where [.] denotes the greatest integer function, then f'(-1) is

Let f(x)={8^(1/x),x<0a[x],a in R-{0},xgeq0, (where [.] denotes the greatest integer function). Then (a) f(x) is Continuous only at a finite number of points (b)Discontinuous at a finite number of points. (c)Discontinuous at an infinite number of points. (d)Discontinuous at x=0

If [.] denotes the greatest integer function, then f(x)=[x]+[x+(1)/(2)]

If f(x)=([x])/(|x|), x ne 0 , where [.] denotes the greatest integer function, then f'(1) is

If f(x)=([x])/(|x|),x ne 0 where [.] denotes the greatest integer function, then f'(1) is

If f(x)={{:(e^(|x|+|x|-1)/(|x|+|x|),":",xne0),(-1,":",x=0):} (where [.] denotes the greatest integer integer function), then

Let f(x)={{:(x[(1)/(x)]+x[x],if, x ne0),(0,if,x=0):} (where [x] denotes the greatest integer function). Then the correct statement is/are

Let f(x)=|x| and g(x)=[x] , (where [.] denotes the greatest integer function) Then, (fog)'(-1) is

If f(x)=e^(sin(x-[x])cospix) , where [x] denotes the greatest integer function, then f(x) is

f(x)=log(x-[x]) , where [*] denotes the greatest integer function. find the domain of f(x).