Home
Class 12
MATHS
If f(x)={sin(pi/2)(x-[x]),x<5 5(b-1),x=5...

If `f(x)={sin(pi/2)(x-[x]),x<5 5(b-1),x=5(a b^2|x^2-11 x+24|)/(x-3),x >5` is continuous at `x=5,a ,b in R` then ([.] denotes the greatest integer function) `a=(25)/(108), b=6/5` b. `a=6/(13), b=(17)/(29)` c. `a=1/2, b=(25)/(36)` d. `a=(23)/(100), b=6/5`

A

`a=(25)/(108),b=(6)/(5)`

B

`a=(6)/(13),b=(17)/(29)`

C

`a=(1)/(2),b=(25)/(36)`

D

`a=(23),(100),b=(6)/(5)`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the values of \( a \) and \( b \) such that the function \( f(x) \) is continuous at \( x = 5 \), we need to ensure that the left-hand limit (LHL) and the right-hand limit (RHL) at \( x = 5 \) are equal to the function value at that point. The function is defined as follows: \[ f(x) = \begin{cases} \sin\left(\frac{\pi}{2}(x - [x])\right) & \text{if } x < 5 \\ 5(b - 1) & \text{if } x = 5 \\ \frac{a b^2 |x^2 - 11x + 24|}{x - 3} & \text{if } x > 5 \end{cases} \] ### Step 1: Calculate the Left-Hand Limit (LHL) For \( x < 5 \): \[ LHL = \lim_{x \to 5^-} f(x) = \lim_{x \to 5^-} \sin\left(\frac{\pi}{2}(x - [x])\right) \] Since \( [x] = 4 \) when \( x < 5 \): \[ LHL = \sin\left(\frac{\pi}{2}(5 - 4)\right) = \sin\left(\frac{\pi}{2}\right) = 1 \] ### Step 2: Calculate the Right-Hand Limit (RHL) For \( x > 5 \): \[ RHL = \lim_{x \to 5^+} f(x) = \lim_{x \to 5^+} \frac{a b^2 |x^2 - 11x + 24|}{x - 3} \] First, we need to factor \( |x^2 - 11x + 24| \): \[ x^2 - 11x + 24 = (x - 3)(x - 8) \] Since \( x > 5 \), \( x - 3 > 0 \) and \( x - 8 < 0 \), thus: \[ |x^2 - 11x + 24| = -(x - 3)(x - 8) = -(x^2 - 11x + 24) \] So we can write: \[ RHL = \lim_{x \to 5^+} \frac{a b^2 (-(x - 3)(x - 8))}{x - 3} \] The \( (x - 3) \) terms cancel out: \[ RHL = \lim_{x \to 5^+} -a b^2 (x - 8) = -a b^2 (5 - 8) = 3ab^2 \] ### Step 3: Set LHL equal to RHL For continuity at \( x = 5 \): \[ LHL = RHL \implies 1 = 3ab^2 \] ### Step 4: Set the function value at \( x = 5 \) The function value at \( x = 5 \): \[ f(5) = 5(b - 1) \] ### Step 5: Set the two equations We have two equations: 1. \( 3ab^2 = 1 \) 2. \( 5(b - 1) = 1 \) From the second equation: \[ 5(b - 1) = 1 \implies b - 1 = \frac{1}{5} \implies b = \frac{6}{5} \] ### Step 6: Substitute \( b \) into the first equation Substituting \( b = \frac{6}{5} \) into \( 3ab^2 = 1 \): \[ 3a\left(\frac{6}{5}\right)^2 = 1 \implies 3a \cdot \frac{36}{25} = 1 \implies a = \frac{25}{108} \] ### Conclusion The values of \( a \) and \( b \) are: \[ a = \frac{25}{108}, \quad b = \frac{6}{5} \]

To determine the values of \( a \) and \( b \) such that the function \( f(x) \) is continuous at \( x = 5 \), we need to ensure that the left-hand limit (LHL) and the right-hand limit (RHL) at \( x = 5 \) are equal to the function value at that point. The function is defined as follows: \[ f(x) = \begin{cases} \sin\left(\frac{\pi}{2}(x - [x])\right) & \text{if } x < 5 \\ ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|9 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|101 Videos
  • COORDINATE SYSTEM

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|2 Videos

Similar Questions

Explore conceptually related problems

If f(x)={(sin(pi/2)(x-[x]),x 5)) is continuous at x=5,a ,b in R then ([.] denotes the greatest integer function) (A) a=(25)/(108), b=6/5 (B) a=6/(13), b=(17)/(29) (C) a=1/2, b=(25)/(36) (D) a=(23)/(100), b=6/5

If [f((sqrt(3))/2)] is [.] denotes the greatest integer function) 4 (b) 5 (c) 6 (d) -7

Domain of f(x)=log(x^2+5x+6)/([x]-1) where [.] denotes greatest integer function:

If ("lim")_(x->1)(2-x+a[x-1]+b[1+x]) exists, then a and b can take the values of (where [.] denotes the greatest integer function). (a) a=1/3,b=1 (b) a=1, b=-1 (c) a=9, b=-9 (d) a=2, b=2/3

If [ ] denotes the greatest integer function, lim_(x to(pi)/2)(5 sin [cos x])/([cos x]+2) is

Find the period (if periodic) of the following function ([.] denotes the greatest integer functions): f(x)=x-[x-b],b in R

If [dot] denotes the greatest integer function, then (lim)_(xvec0)x/a[b/x] a. b/a b. 0 c. a/b d. does not exist

Let f : R->R be given by f(x) = {|x-[x]| , when [x] is odd and |x-[x]-1| , when [x] is even ,where [.] denotes the greatest integer function , then int_-2^4 f(x) dx is equal to (a) (5)/(2) (b) (3)/(2) (c) 5 (d) 3

If [x]^2-5[x]+6=0, where [.] denotes the greatest integer function, then x in [3,4] (b) x in (2,3] (c) x in [2,3] (d) x in [2,4)

If the function f(x)=[3.5+bsin x] (where [.] denotes the greatest integer function) is an even function, the complete set of values of b is