Home
Class 12
MATHS
f(x)={(x^2+e^(1/(2-x)))^(-1)k ,x=2, x!=2...

`f(x)={(x^2+e^(1/(2-x)))^(-1)k ,x=2, x!=2` is continuous from right at the point `x=2,` then `k` equals
a. `0`
b. `1//4`
c. `-1//4`
d. none of these

A

0

B

1\4

C

`-1//4`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To determine the value of \( k \) such that the function \[ f(x) = \begin{cases} (x^2 + e^{\frac{1}{2-x}})^{-1} & \text{if } x \neq 2 \\ k & \text{if } x = 2 \end{cases} \] is continuous from the right at the point \( x = 2 \), we need to ensure that the right-hand limit of \( f(x) \) as \( x \) approaches 2 is equal to \( f(2) = k \). ### Step 1: Find the right-hand limit as \( x \) approaches 2. We need to calculate: \[ \lim_{x \to 2^+} f(x) = \lim_{x \to 2^+} (x^2 + e^{\frac{1}{2-x}})^{-1} \] ### Step 2: Substitute \( x = 2 + h \) where \( h \to 0^+ \). Let \( x = 2 + h \), where \( h \) is a small positive number approaching 0. Then we have: \[ \lim_{h \to 0^+} ((2 + h)^2 + e^{\frac{1}{2 - (2 + h)}})^{-1} \] ### Step 3: Simplify the expression. Calculating \( (2 + h)^2 \): \[ (2 + h)^2 = 4 + 4h + h^2 \] Now, for \( e^{\frac{1}{2 - (2 + h)}} = e^{\frac{1}{-h}} \): As \( h \to 0^+ \), \( \frac{1}{-h} \to -\infty \), thus: \[ e^{\frac{1}{-h}} \to 0 \] ### Step 4: Combine the results. Now substituting back into our limit: \[ \lim_{h \to 0^+} ((4 + 4h + h^2) + 0)^{-1} = \lim_{h \to 0^+} (4 + 4h + h^2)^{-1} \] As \( h \to 0 \): \[ 4 + 4h + h^2 \to 4 \] Thus, we have: \[ \lim_{h \to 0^+} (4 + 4h + h^2)^{-1} = \frac{1}{4} \] ### Step 5: Set the limit equal to \( k \). For continuity at \( x = 2 \): \[ k = \lim_{x \to 2^+} f(x) = \frac{1}{4} \] ### Conclusion: Thus, the value of \( k \) is \[ \boxed{\frac{1}{4}} \]

To determine the value of \( k \) such that the function \[ f(x) = \begin{cases} (x^2 + e^{\frac{1}{2-x}})^{-1} & \text{if } x \neq 2 \\ k & \text{if } x = 2 \end{cases} ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|9 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|101 Videos
  • COORDINATE SYSTEM

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|2 Videos

Similar Questions

Explore conceptually related problems

f(x)={(x^2+e^(1/(2-x)))^(-1)k ,x=2, x!=2 is continuous from right at the point x=2, then k equals 0 b. 1//4 c. -1//4 d. none of these

If f(x)={((1-coskx)/(xsinx) ,, x!=0),(1/2 ,, x=0):} is continuous at x=0, find k

If f(x)={(36^x-9^x-4^x+1)/(sqrt(2)-sqrt(1+cosx)),x!=0 \ \ \ \k ,x=0 is continuous at x=0, then k equal to

If the function f(x)={(cosx)^(1/x),x!=0k ,x=0 is continuous at x=0 , then the value of k is (a) 0 (b) 1 (c) -1 (d) None of these

If f(x)={(cos^2x-sin^2x-1)/(sqrt(x^2+1)-1), x!=0,and f(x)=k , x=0" is continuous at "x=0,"find " k

If f(x)={(sin((2x^2)/a)+cos((3x)/b))^((ab)/x^2),x!=0, and e^3, x=0 is continuous at x=0AAb in R then minimum value of a is a. -1//8 b. -1//4 c. -1//2 d. 0

If f(x)=(x+1)^(cotx) be continuous at x=0, the f(0) is equal to (a) 0 (b) 1/e (c) e (d) none of these

If f(x)={(sin((2x^2)/a)+cos((3x)/b))^(ab//x^2),x!=0 & e^3 at x=0} is continuous at x=0AAb in R then minimum value of a is -1//8 b. -1//4 c. -1//2 d. 0

If f(x)={(1-cosx)/(x^2)\ \ \ ,\ \ \ x!=0k\ \ \ ,\ \ \ x=0 is continuous at x=0 , find kdot

Let f(x)={1/(|x|)for|x|geq1a x^2+bfor|x|<1iff(x) is continuous and differentiable at any point, then a=1/2,b=-3/2 (b) a=-1/2,b=3/2 a=1, b=-1 (d) none of these