Home
Class 12
MATHS
Let f(x)={((alpha cotx)/x+beta/x^2 ,, 0<...

Let `f(x)={((alpha cotx)/x+beta/x^2 ,, 0<|x|lt=1),(1/3 ,, x=0):}`. If `f(x)` is continuous at `x=0` then the value of `alpha^2+beta^2` is

A

1

B

2

C

5

D

9

Text Solution

Verified by Experts

The correct Answer is:
B

`underset(xrarr0)(lim)f(x)=(1)/(3)`
`rArr" "underset(xrarr0)(lim)(x.alphacotx+beta)/(x^(2))=(1)/(3)`
`rArr" "underset(xrarr0)(lim)(xalpha+betatanx)/(x^(2).tanx)=(1)/(3)`
`rArr" "underset(xrarr0)(lim)(alphax+beta(x+(x^(3))/(3)+...oo))/(x^(3)((tanx)/(x)))=(1)/(3)`
`rArr" "underset(xrarr0)(lim)((alpha+beta)x+((beta)/(3))x^(3)+...oo)/(x^(3))=(1)/(3)`
So, `" "alpha+beta=0`
Also,`" "beta=1rArr alpha=-1`
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|9 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|101 Videos
  • COORDINATE SYSTEM

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|2 Videos

Similar Questions

Explore conceptually related problems

Let f (x)= [{:(x ^(2alpha+1)ln x ,,, x gt0),(0 ,,, x =0):} If f (x) satisfies rolle's theorem in interval [0,1], then alpha can be:

If x=-1 and x=""2 are extreme points of f(x)""=alphalog|x|+betax^2+x , then (1) alpha=-6,beta=1/2 (2) alpha=-6,beta=-1/2 (3) alpha=2,beta=-1/2 (4) alpha=2,beta=1/2

Consider f (x) = x ^(ln x), and g (x) = e ^(2) x. Let alpha and beta be two values of x satisfying f (x) = g(x)( alpha lt beta) If h (x) = (f (x))/(g (x)) then h'(alpha) equals to:

If f(x) = |{:(cos (x+alpha),cos(x+beta),cos(x+gamma)),(sin (x+alpha),sin(x+beta),sin(x+gamma)),(sin(beta+gamma),sin(gamma+alpha),sin(alpha+beta)):}| then f(theta)-2f(phi)+f(psi) is equal to

Consider f (x) = x ^(ln x), and g (x) = e ^(2) x. Let alpha and beta be two values of x satisfying f (x) = g(x)( alpha lt beta) lim _(x to beta) (f (x) -c beta)/(g (x) - beta ^(2))=l then the value of x -l equals to:

Let f(x)=sin^(2)(x +alpha)+sin^(2)(x +beta)-2cos(alpha-beta)sin(x+alpha)sin(x +beta) . Which of the following is TRUE ?

if f(x)=(sin (x+alpha)/(sin(x+beta))),alpha ne beta then f(x) has

Let f(x)=max{tanx, cotx} . Then the number of roots of the equation f(x)=(1)/(2)" in "(0, 2pi) is

Repeated roots : If equation f(x) = 0, where f(x) is a polyno- mial function, has roots alpha,alpha,beta,… or alpha root is repreated root, then f(x) = 0 is equivalent to (x-alpha)^(2)(x-beta)…=0, from which we can conclude that f(x)=0 or 2(x-alpha)[(x-beta)...]+(x-alpha)^(2)[(x-beta)...]'=0 or (x-alpha) [2 {(x-beta)...}+(x-alpha){(x-beta)...}']=0 has root alpha . Thus, if alpha root occurs twice in the, equation, then it is common in equations f(x) = 0 and f'(x) = 0. Similarly, if alpha root occurs thrice in equation, then it is common in the equations f(x)=0, f'(x)=0, and f''(x)=0. If x-c is a factor of order m of the polynomial f(x) of degree n (1ltmltn) , then x=c is a root of the polynomial [where f^(r)(x) represent rth derivative of f(x) w.r.t. x]

Let alpha, beta be the roots of x^(2) + bx + 1 = 0 . Them find the equation whose roots are -(alpha + 1//beta) and -(beta + 1//alpha).