Home
Class 12
MATHS
If f(x)'{{:(sin((a-x)/(2))tan[(pix)/(2a)...

If `f(x)'{{:(sin((a-x)/(2))tan[(pix)/(2a)],"for",xgta),(([cos((pix)/(2a))])/(a-x),"for",x lta):}`
(where [x] is the greatest integer function of x) and a gt 0, then

A

`f(a^(-))lt0`

B

f has a removable discontinuity at x = a

C

f has an irremovable discontinuity at x = a

D

`f(a^(+))lt0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function \( f(x) \) defined in two parts depending on the value of \( x \). The function is given as: \[ f(x) = \begin{cases} \sin\left(\frac{a-x}{2}\right) \tan\left(\frac{\pi x}{2a}\right) & \text{for } x > a \\ \frac{\cos\left(\frac{\pi x}{2a}\right)}{a-x} & \text{for } x < a \end{cases} \] We need to check the continuity of \( f(x) \) at \( x = a \). ### Step 1: Find \( f(a^-) \) (the left-hand limit as \( x \) approaches \( a \)) For \( x < a \), we use the second part of the function: \[ f(a^-) = \lim_{h \to 0} f(a - h) = \lim_{h \to 0} \frac{\cos\left(\frac{\pi (a-h)}{2a}\right)}{a - (a - h)} = \lim_{h \to 0} \frac{\cos\left(\frac{\pi (a-h)}{2a}\right)}{h} \] As \( h \to 0 \): \[ f(a^-) = \lim_{h \to 0} \frac{\cos\left(\frac{\pi a}{2a} - \frac{\pi h}{2a}\right)}{h} = \lim_{h \to 0} \frac{\cos\left(\frac{\pi}{2} - \frac{\pi h}{2a}\right)}{h} \] Using the fact that \( \cos\left(\frac{\pi}{2} - x\right) = \sin(x) \): \[ f(a^-) = \lim_{h \to 0} \frac{\sin\left(\frac{\pi h}{2a}\right)}{h} \] Using the limit property \( \lim_{x \to 0} \frac{\sin(x)}{x} = 1 \): \[ f(a^-) = \lim_{h \to 0} \frac{\sin\left(\frac{\pi h}{2a}\right)}{h} = \lim_{h \to 0} \frac{\frac{\pi h}{2a}}{h} = \frac{\pi}{2a} \] ### Step 2: Find \( f(a^+) \) (the right-hand limit as \( x \) approaches \( a \)) For \( x > a \), we use the first part of the function: \[ f(a^+) = \lim_{h \to 0} f(a + h) = \lim_{h \to 0} \sin\left(\frac{a - (a + h)}{2}\right) \tan\left(\frac{\pi (a + h)}{2a}\right) \] This simplifies to: \[ f(a^+) = \lim_{h \to 0} \sin\left(-\frac{h}{2}\right) \tan\left(\frac{\pi a}{2a} + \frac{\pi h}{2a}\right) \] Using \( \sin(-x) = -\sin(x) \): \[ f(a^+) = -\lim_{h \to 0} \sin\left(\frac{h}{2}\right) \tan\left(\frac{\pi}{2} + \frac{\pi h}{2a}\right) \] Since \( \tan\left(\frac{\pi}{2} + x\right) = -\cot(x) \): \[ f(a^+) = -\lim_{h \to 0} \sin\left(\frac{h}{2}\right) \left(-\cot\left(\frac{\pi h}{2a}\right)\right) = \lim_{h \to 0} \sin\left(\frac{h}{2}\right) \cot\left(\frac{\pi h}{2a}\right) \] Using \( \cot(x) = \frac{\cos(x)}{\sin(x)} \): \[ f(a^+) = \lim_{h \to 0} \sin\left(\frac{h}{2}\right) \cdot \frac{\cos\left(\frac{\pi h}{2a}\right)}{\sin\left(\frac{\pi h}{2a}\right)} \] As \( h \to 0 \): \[ f(a^+) = \lim_{h \to 0} \frac{\sin\left(\frac{h}{2}\right)}{\frac{\pi h}{2a}} \cdot \cos\left(\frac{\pi h}{2a}\right) \cdot \frac{\pi h}{2a} \] Using the limit property again: \[ f(a^+) = \frac{2a}{\pi} \cdot \cos(0) = \frac{2a}{\pi} \] ### Step 3: Check for continuity at \( x = a \) For continuity at \( x = a \), we need \( f(a^-) = f(a^+) \): \[ \frac{\pi}{2a} \neq \frac{2a}{\pi} \] Thus, \( f(a^-) \neq f(a^+) \), indicating that \( f(x) \) has a removable discontinuity at \( x = a \). ### Conclusion The function \( f(x) \) has a removable discontinuity at \( x = a \).

To solve the problem, we need to analyze the function \( f(x) \) defined in two parts depending on the value of \( x \). The function is given as: \[ f(x) = \begin{cases} \sin\left(\frac{a-x}{2}\right) \tan\left(\frac{\pi x}{2a}\right) & \text{for } x > a \\ \frac{\cos\left(\frac{\pi x}{2a}\right)}{a-x} & \text{for } x < a \end{cases} ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|9 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|101 Videos
  • COORDINATE SYSTEM

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|2 Videos

Similar Questions

Explore conceptually related problems

Let [.] represent the greatest integer function and f (x)=[tan^2 x] then :

lim_(xto1) [cosec(pix)/(2)]^(1//(1-x)) (where [.] represents the greatest integer function) is equal to

If f(x) = {{:("sin"(pix)/(2)",",x lt 1),([x]",",x ge 1):} , where [x] denotes the greatest integer function, then

If f(x)=(sin([x]pi))/(x^2+x+1) , where [dot] denotes the greatest integer function, then

If f(x)=[sin^(2) x] ([.] denotes the greatest integer function), then

If f(x)=e^(sin(x-[x])cospix) , where [x] denotes the greatest integer function, then f(x) is

If f(x)=cos[pi/x] cos(pi/2(x-1)) ; where [x] is the greatest integer function of x ,then f(x) is continuous at :

If f(x) =[ sin ^(-1)(sin 2x )] (where, [] denotes the greatest integer function ), then

f(x)=sin^-1[log_2(x^2/2)] where [ . ] denotes the greatest integer function.

If f(x)=cos[pi^2]x +cos[-pi^2]x , where [x] stands for the greatest integer function, then