Home
Class 12
MATHS
Let f(x) be differentiable for real x su...

Let `f(x)` be differentiable for real `x` such that `f^(prime)(x)>0on(-oo,-4),` `f^(prime)(x)<0on(-4,6),` `f^(prime)(x)>0on(6,oo),` If `g(x)=f(10-2x),` then the value of `g^(prime)(2)` is a. 1 b. 2 c. 0 d. 4

A

1

B

2

C

0

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( g'(2) \) given that \( g(x) = f(10 - 2x) \) and the behavior of the derivative \( f'(x) \) over different intervals. ### Step-by-Step Solution: 1. **Identify the function \( g(x) \)**: \[ g(x) = f(10 - 2x) \] 2. **Differentiate \( g(x) \)** using the chain rule: \[ g'(x) = f'(10 - 2x) \cdot (-2) \] 3. **Evaluate \( g'(2) \)**: \[ g'(2) = -2 \cdot f'(10 - 2 \cdot 2) = -2 \cdot f'(10 - 4) = -2 \cdot f'(6) \] 4. **Determine the value of \( f'(6) \)**: From the problem statement, we know: - \( f'(x) > 0 \) on \( (-\infty, -4) \) - \( f'(x) < 0 \) on \( (-4, 6) \) - \( f'(x) > 0 \) on \( (6, \infty) \) Since \( 6 \) falls in the interval \( (-4, 6) \), we have: \[ f'(6) = 0 \] 5. **Substitute \( f'(6) \) back into the equation for \( g'(2) \)**: \[ g'(2) = -2 \cdot f'(6) = -2 \cdot 0 = 0 \] ### Conclusion: The value of \( g'(2) \) is \( 0 \). ### Final Answer: The correct option is **c. 0**.

To solve the problem, we need to find the value of \( g'(2) \) given that \( g(x) = f(10 - 2x) \) and the behavior of the derivative \( f'(x) \) over different intervals. ### Step-by-Step Solution: 1. **Identify the function \( g(x) \)**: \[ g(x) = f(10 - 2x) \] ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|9 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|101 Videos
  • COORDINATE SYSTEM

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|2 Videos

Similar Questions

Explore conceptually related problems

If f(x)=(x-4)/(2sqrt(x)) , then f^(prime)(1) is a. 5/4 b. 4/5 c. 1 d. 0

Let F(x)=f(x)g(x)h(x) for all real x ,w h e r ef(x),g(x),a n dh(x) are differentiable functions. At some point x_0,F^(prime)(x_0)=21 F(x_0),f^(prime)(x_0)4f(x_0),g^(prime)(x_0)=-7g(x_0), then the value of g^(prime)(1) is ________

Let f be a twice differentiable function such that f^(prime prime)(x)=-f(x),a n df^(prime)(x)=g(x),h(x)=[f(x)]^2+[g(x)]^2dot Find h(10)ifh(5)=11

The function f: RvecR satisfies f(x^2)dotf^(x)=f^(prime)(x)dotf^(prime)(x^2) for all real xdot Given that f(1)=1 and f^(1)=8 , then the value of f^(prime)(1)+f^(1) is 2 b. 4 c. 6 d. 8

Let f(x) be the fourth degree polynomial such that f^(prime)(0)-6,f(0)=2a n d(lim)_(xvec1)(f(x))/((x-1)^2)=1 The value of f(2) is 3 b. 1 c. 0 d. 2

Let f(x)a n dg(x) be differentiable functions such that f^(prime)(x)g(x)!=f(x)g^(prime)(x) for any real xdot Show that between any two real solution of f(x)=0, there is at least one real solution of g(x)=0.

Let f:(0,oo)->R be a differentiable function such that f'(x)=2-f(x)/x for all x in (0,oo) and f(1)=1 , then

Let f:(0,oo)->R be a differentiable function such that f'(x)=2-f(x)/x for all x in (0,oo) and f(1)=1 , then f(x) is

If f(0)=f(1)=0 , f^(prime)(1)=f^(prime)(0)=2 and y=f(e^x)e^(f(x)) , write the value of (dy)/(dx) at x=0 .

If f(0)=0,f^(prime)(0)=2, then the derivative of y=f(f(f(x))) at x=0 is 2 (b) 8 (c) 16 (d) 4