Home
Class 12
MATHS
Number of point where function f(x) defi...

Number of point where function f(x) defined as `f:[0,2pi] rarrR,f(x)={{:(3-|cosx-(1)/(sqrt2)|",",|sinx|lt(1)/(sqrt2)),(2+|cosx+(1)/(sqrt2)|",",|sinx|ge(1)/(sqrt2)):}` is non differentiable is

A

2

B

4

C

6

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To determine the number of points where the function \( f(x) \) is non-differentiable, we need to analyze the given piecewise function: \[ f(x) = \begin{cases} 3 - | \cos x - \frac{1}{\sqrt{2}} | & \text{if } |\sin x| < \frac{1}{\sqrt{2}} \\ 2 + | \cos x + \frac{1}{\sqrt{2}} | & \text{if } |\sin x| \geq \frac{1}{\sqrt{2}} \end{cases} \] ### Step 1: Identify the conditions for the piecewise function The function is defined in two cases based on the value of \( |\sin x| \): 1. Case 1: \( |\sin x| < \frac{1}{\sqrt{2}} \) 2. Case 2: \( |\sin x| \geq \frac{1}{\sqrt{2}} \) ### Step 2: Find the critical points for \( |\sin x| = \frac{1}{\sqrt{2}} \) The points where \( |\sin x| = \frac{1}{\sqrt{2}} \) occur at: - \( \sin x = \frac{1}{\sqrt{2}} \) at \( x = \frac{\pi}{4}, \frac{3\pi}{4} \) - \( \sin x = -\frac{1}{\sqrt{2}} \) at \( x = \frac{5\pi}{4}, \frac{7\pi}{4} \) Thus, the critical points are: - \( x = \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4} \) ### Step 3: Check differentiability at the critical points At each of these points, we need to check if the function is non-differentiable. This can happen if: - The function is not continuous at these points. - The left-hand derivative and right-hand derivative at these points do not match. ### Step 4: Evaluate the function at the critical points 1. **At \( x = \frac{\pi}{4} \)**: - \( |\sin x| < \frac{1}{\sqrt{2}} \): Use \( f(x) = 3 - |\cos x - \frac{1}{\sqrt{2}}| \) - \( |\sin x| \geq \frac{1}{\sqrt{2}} \): Use \( f(x) = 2 + |\cos x + \frac{1}{\sqrt{2}}| \) 2. **At \( x = \frac{3\pi}{4} \)**: - Similar evaluation as above. 3. **At \( x = \frac{5\pi}{4} \)**: - Similar evaluation as above. 4. **At \( x = \frac{7\pi}{4} \)**: - Similar evaluation as above. ### Step 5: Conclusion Since the function switches between two different expressions at these four points, it will be non-differentiable at each of these points. Thus, the total number of points where the function \( f(x) \) is non-differentiable is **4**. ### Final Answer: The number of points where the function \( f(x) \) is non-differentiable is **4**. ---

To determine the number of points where the function \( f(x) \) is non-differentiable, we need to analyze the given piecewise function: \[ f(x) = \begin{cases} 3 - | \cos x - \frac{1}{\sqrt{2}} | & \text{if } |\sin x| < \frac{1}{\sqrt{2}} \\ 2 + | \cos x + \frac{1}{\sqrt{2}} | & \text{if } |\sin x| \geq \frac{1}{\sqrt{2}} \end{cases} ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|9 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|101 Videos
  • COORDINATE SYSTEM

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|2 Videos

Similar Questions

Explore conceptually related problems

Find the domain of the function f(x) defined by f(x)=sqrt(4-x)+1/(sqrt(x^2-1)) .

Find the domain of the function f(x) defined by f(x)=sqrt(4-x)+1/(sqrt(x^2-1)) .

Find the range of f(x)=(log)_2((sinx-cosx+3sqrt(2))/(sqrt(2)))

Find the range of f(x)=(log)_2((sinx-cosx+3sqrt(2))/(sqrt(2)))

cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))=(x)/(2), x in (0,(pi)/(4))

The function f(x)=sqrt(3)cosx+sinx has an amplitude of

if: f(x)=(sinx)/(sqrt(1+tan^2x))-(cosx)/(sqrt(1+cot^2x)), then find the range of f(x)

If int(sinx)/(sin(x-(pi)/(4)))dx=Af(x)+(1)/(sqrt2)log[|sinx-cosx|]+c, then

The derivative of f(x)=cos^(-1)((1)/(sqrt3)(2cosx-3sinx))+{sin^(-1)((1)/(sqrt3)(2cosx+3sinx))} w.r.t. sqrt(1+x^(2)) at x=(1)/(sqrt3) is.........

Let a , b in R,(a in 0) . If the funtion f defined as f(x)={{:(,(2x^(2))/(a),0 le x lt 1),(,a,1 le x lt sqrt2),(,(2b^(2)-4b)/(x^(3)),sqrt2lt x lt oo):} is a continous in [0,oo) . Then, (a,b)=