Home
Class 12
MATHS
If for a continuous function f,f(0)=f(1)...

If for a continuous function `f,f(0)=f(1)=0,f^(prime)(1)=2a n dy(x)=f(e^x)e^(f(x))` , then `y^(prime)(0)` is equal to a. 1 b. 2 c. 0 d. none of these

A

1

B

2

C

0

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we start with the given function and apply the necessary differentiation rules. ### Step 1: Write down the function We are given: \[ y(x) = f(e^x) \cdot e^{f(x)} \] ### Step 2: Differentiate using the product rule To find \( y'(x) \), we will use the product rule: \[ y' = u'v + uv' \] where \( u = f(e^x) \) and \( v = e^{f(x)} \). 1. Differentiate \( u = f(e^x) \): - By the chain rule, \( u' = f'(e^x) \cdot e^x \). 2. Differentiate \( v = e^{f(x)} \): - Again by the chain rule, \( v' = e^{f(x)} \cdot f'(x) \). Putting it all together: \[ y'(x) = f'(e^x) \cdot e^x \cdot e^{f(x)} + f(e^x) \cdot e^{f(x)} \cdot f'(x) \] ### Step 3: Evaluate \( y'(0) \) Now, we need to evaluate \( y'(0) \): \[ y'(0) = f'(e^0) \cdot e^0 \cdot e^{f(0)} + f(e^0) \cdot e^{f(0)} \cdot f'(0) \] Since \( e^0 = 1 \) and \( f(0) = 0 \): \[ y'(0) = f'(1) \cdot 1 \cdot e^0 + f(1) \cdot e^0 \cdot f'(0) \] \[ y'(0) = f'(1) + f(1) \cdot f'(0) \] ### Step 4: Substitute known values From the problem statement, we know: - \( f(1) = 0 \) - \( f'(1) = 2 \) Substituting these values: \[ y'(0) = 2 + 0 \cdot f'(0) \] \[ y'(0) = 2 \] ### Conclusion Thus, the value of \( y'(0) \) is: \[ \boxed{2} \]

To solve the problem step by step, we start with the given function and apply the necessary differentiation rules. ### Step 1: Write down the function We are given: \[ y(x) = f(e^x) \cdot e^{f(x)} \] ### Step 2: Differentiate using the product rule To find \( y'(x) \), we will use the product rule: ...
Promotional Banner

Topper's Solved these Questions

  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise Single correct Answer|34 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|14 Videos

Similar Questions

Explore conceptually related problems

If for a continuous function f,f(0)=f(1)=0,f^(prime)(1)=2 and y(x)=f(e^x)e^(f(x)) , then y^(prime)(0) is equal to a. 1 b. 2 c. 0 d. none of these

If f(x)={xsin(1/x) ,\ x!=0, then (lim)_(x->0)f(x) equals a. 1 b . 0 c. -1 d. none of these

If f(x)=int_0^1(dt)/(1+|x-t|) ,then f^(prime)(1/2) is equal to (a)0 (b) 1/2 (c) 1 (d) none of these

If f(0)=f(1)=0 , f^(prime)(1)=f^(prime)(0)=2 and y=f(e^x)e^(f(x)) , write the value of (dy)/(dx) at x=0 .

If f(x)=(x+1)^(cotx) be continuous at x=0, the f(0) is equal to (a) 0 (b) 1/e (c) e (d) none of these

If 8f(x)+6f(1/x)=x+5 and y=x^2(f(x), then (dy)/(dx) at x=-1 is equal to (a)0 (b) 1/(14) (c) -1/4 (d) None of these

If 8f(x)+6f(1/x)=x+5 and y=x^2(f(x), then (dy)/(dx) at x=-1 is equal to 0 (b) -1/(14) (c) -1/4 (d) None of these

Let f(x)={(sinx^2)/x x!=0 0x=0, then f^(prime)(0^+)+f^(prime)(0^-) has the value equal to (a) 0 (b) 1 (c) 2 (d) None of these

If f^(prime)(x)=sqrt(2x^2-1) and y=f(x^2),t h e n(dy)/(dx) at x=1 is (a)2 (b) 1 (c) -2 (d) none of these

Let f(x) be differentiable for real x such that f^(prime)(x)>0on(-oo,-4), f^(prime)(x) 0on(6,oo), If g(x)=f(10-2x), then the value of g^(prime)(2) is a. 1 b. 2 c. 0 d. 4

CENGAGE ENGLISH-METHODS OF DIFFERENTIATION-Single Correct Answer Type
  1. If xe^(xy)-y=sin^(2)x then (dy)/(dx) at x = 0 is

    Text Solution

    |

  2. about to only mathematics

    Text Solution

    |

  3. If for a continuous function f,f(0)=f(1)=0,f^(prime)(1)=2a n dy(x)=f(e...

    Text Solution

    |

  4. The derivative of cos(2tan^(-1)sqrt((1-x)/(1+x)))-2cos^(-1)sqrt((1-x)/...

    Text Solution

    |

  5. If y=(x^(2))/(2)+(1)/(2)xsqrt(x^(2)+1)+lnsqrt(x+sqrt(x^(2)+1)) then th...

    Text Solution

    |

  6. Let g(x)=f(x)sinx ,w h e r ef(x) is a twice differentiable function on...

    Text Solution

    |

  7. If f(x)=log(e)(log(e)x)/log(e)x then f'(x) at x = e is

    Text Solution

    |

  8. Let g(x)=e^(f(x))a n df(x+1)=x+f(x)AAx in Rdot If n in I^+,t h e n(g...

    Text Solution

    |

  9. d/(dx)[cos^(-1)(xsqrt(x)-sqrt((1-x)(1-x^2)))]= 1/(sqrt(1-x^2))-1/(2s...

    Text Solution

    |

  10. If t(1+x^2)=x and x^2+t^2=y, then at x=2 the value of (d y)/(d x) is e...

    Text Solution

    |

  11. if x=(1+t)/t^3 ,y=3/(2t^2)+2/t satisfies f(x)*{(dy)/(dx)}^3=1+(dy)/(d...

    Text Solution

    |

  12. Let y=x^3-8x+7a n dx=f(t)dot If (dy)/(dt)=2 and x=3 at t=0, then (dx)/...

    Text Solution

    |

  13. If x=sectheta-costheta and y=sec^n theta- cos^n theta then show that (...

    Text Solution

    |

  14. The derivative of the function represented parametrically as x=2t=|...

    Text Solution

    |

  15. If y = tan^(-1)(u/sqrt(1-u^2)) and x = sec^(-1)(1/(2u^2-1)), u in (0...

    Text Solution

    |

  16. The differential coefficient of sin^(-1)((5cos x-4s in x)/(sqrt(41))) ...

    Text Solution

    |

  17. x y=(x+y)6na n d(dy)/(dx)=y/x t h e nn= 1 b.2 c. 3 d. 4

    Text Solution

    |

  18. If x+y=3e^2t h e d/(dx)(x^y)=0forx= e^2 b. e^e c. e d. 2e^2

    Text Solution

    |

  19. If f(x)=(x-1)^(100)(x-2)^(2(99))(x-3)^(3(98))…(x-100)^(100), then the ...

    Text Solution

    |

  20. The function f: RvecR satisfies f(x^2)dotf^(x)=f^(prime)(x)dotf^(prime...

    Text Solution

    |