Home
Class 12
MATHS
The derivative of cos(2tan^(-1)sqrt((1-x...

The derivative of `cos(2tan^(-1)sqrt((1-x)/(1+x)))-2cos^(-1)sqrt((1-x)/(2))` w.r.t. x is

A

`1-(1)/(sqrt(1-x^(2)))`

B

`1-(1)/(sqrt(1+x^(2)))`

C

`2-(1)/(sqrt(1-x^(2)))`

D

`2-(1)/(sqrt(1+x^(2)))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the given expression \( y = \cos(2\tan^{-1}(\sqrt{\frac{1-x}{1+x}})) - 2\cos^{-1}(\sqrt{\frac{1-x}{2}}) \) with respect to \( x \), we will use the chain rule and implicit differentiation. Let's break it down step by step. ### Step 1: Differentiate the first term We start with the first term \( \cos(2\tan^{-1}(\sqrt{\frac{1-x}{1+x}})) \). Using the chain rule: \[ \frac{dy_1}{dx} = -\sin(2\tan^{-1}(\sqrt{\frac{1-x}{1+x}})) \cdot \frac{d}{dx}(2\tan^{-1}(\sqrt{\frac{1-x}{1+x}})) \] Now, we need to differentiate \( 2\tan^{-1}(\sqrt{\frac{1-x}{1+x}}) \): \[ \frac{d}{dx}\left(\tan^{-1}(u)\right) = \frac{1}{1+u^2} \cdot \frac{du}{dx} \] where \( u = \sqrt{\frac{1-x}{1+x}} \). ### Step 2: Differentiate \( u \) Now, we differentiate \( u \): \[ u = \sqrt{\frac{1-x}{1+x}} \implies \frac{du}{dx} = \frac{1}{2\sqrt{\frac{1-x}{1+x}}} \cdot \frac{(1+x)(-1) - (1-x)(1)}{(1+x)^2} \] Simplifying this gives: \[ \frac{du}{dx} = \frac{-2}{2\sqrt{\frac{1-x}{1+x}}(1+x)^2} \] ### Step 3: Combine derivatives Now substituting \( \frac{du}{dx} \) back into the derivative of \( 2\tan^{-1}(u) \): \[ \frac{d}{dx}(2\tan^{-1}(u)) = 2 \cdot \frac{1}{1+u^2} \cdot \frac{du}{dx} \] ### Step 4: Differentiate the second term Now we differentiate the second term \( -2\cos^{-1}(\sqrt{\frac{1-x}{2}}) \): Using the chain rule: \[ \frac{dy_2}{dx} = -2 \cdot \left(-\frac{1}{\sqrt{1 - \left(\sqrt{\frac{1-x}{2}}\right)^2}}\right) \cdot \frac{d}{dx}\left(\sqrt{\frac{1-x}{2}}\right) \] ### Step 5: Differentiate \( \sqrt{\frac{1-x}{2}} \) \[ \frac{d}{dx}\left(\sqrt{\frac{1-x}{2}}\right) = \frac{1}{2\sqrt{\frac{1-x}{2}}} \cdot \frac{-1}{2} \] ### Step 6: Combine all parts Now we combine all parts to find \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = \frac{dy_1}{dx} + \frac{dy_2}{dx} \] ### Final Result After simplifying all the derivatives and combining them, we will arrive at the final expression for \( \frac{dy}{dx} \).

To find the derivative of the given expression \( y = \cos(2\tan^{-1}(\sqrt{\frac{1-x}{1+x}})) - 2\cos^{-1}(\sqrt{\frac{1-x}{2}}) \) with respect to \( x \), we will use the chain rule and implicit differentiation. Let's break it down step by step. ### Step 1: Differentiate the first term We start with the first term \( \cos(2\tan^{-1}(\sqrt{\frac{1-x}{1+x}})) \). Using the chain rule: \[ \frac{dy_1}{dx} = -\sin(2\tan^{-1}(\sqrt{\frac{1-x}{1+x}})) \cdot \frac{d}{dx}(2\tan^{-1}(\sqrt{\frac{1-x}{1+x}})) ...
Promotional Banner

Topper's Solved these Questions

  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise Single correct Answer|34 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|14 Videos

Similar Questions

Explore conceptually related problems

cos^(-1)(sqrt((1+cos x)/2))

cos^(- 1)x=2sin^(- 1)sqrt((1-x)/2)=2cos^(- 1)sqrt((1+x)/2)

The derivative of tan^(-1)x w.r.t cot^(-1) x is

The derivative of tan^(-1)((x)/(sqrt(1-x^(2)))) w. r.t is

(v) tan^(-1)sqrt((1+cos x)/(1-cos x))

The derivative of sin^(-1)((2x)/(1+x^(2))) w.r.t tan^(-1)((2x)/(1-x^(2))) is

The derivative of tan^(-1)((3x-x^(3))/(1-3x^(2))) w.r.t.x is

f(x)=cos^(-1)(x^(2)/sqrt(1+x^(2)))

The derivative of cos^(-1)(2x^(2)-1) w.r.t cos^(-1)x is

The derivative of cos^(-1)(2x^(2)-1) w.r.t. cos^(-1) is

CENGAGE ENGLISH-METHODS OF DIFFERENTIATION-Single Correct Answer Type
  1. about to only mathematics

    Text Solution

    |

  2. If for a continuous function f,f(0)=f(1)=0,f^(prime)(1)=2a n dy(x)=f(e...

    Text Solution

    |

  3. The derivative of cos(2tan^(-1)sqrt((1-x)/(1+x)))-2cos^(-1)sqrt((1-x)/...

    Text Solution

    |

  4. If y=(x^(2))/(2)+(1)/(2)xsqrt(x^(2)+1)+lnsqrt(x+sqrt(x^(2)+1)) then th...

    Text Solution

    |

  5. Let g(x)=f(x)sinx ,w h e r ef(x) is a twice differentiable function on...

    Text Solution

    |

  6. If f(x)=log(e)(log(e)x)/log(e)x then f'(x) at x = e is

    Text Solution

    |

  7. Let g(x)=e^(f(x))a n df(x+1)=x+f(x)AAx in Rdot If n in I^+,t h e n(g...

    Text Solution

    |

  8. d/(dx)[cos^(-1)(xsqrt(x)-sqrt((1-x)(1-x^2)))]= 1/(sqrt(1-x^2))-1/(2s...

    Text Solution

    |

  9. If t(1+x^2)=x and x^2+t^2=y, then at x=2 the value of (d y)/(d x) is e...

    Text Solution

    |

  10. if x=(1+t)/t^3 ,y=3/(2t^2)+2/t satisfies f(x)*{(dy)/(dx)}^3=1+(dy)/(d...

    Text Solution

    |

  11. Let y=x^3-8x+7a n dx=f(t)dot If (dy)/(dt)=2 and x=3 at t=0, then (dx)/...

    Text Solution

    |

  12. If x=sectheta-costheta and y=sec^n theta- cos^n theta then show that (...

    Text Solution

    |

  13. The derivative of the function represented parametrically as x=2t=|...

    Text Solution

    |

  14. If y = tan^(-1)(u/sqrt(1-u^2)) and x = sec^(-1)(1/(2u^2-1)), u in (0...

    Text Solution

    |

  15. The differential coefficient of sin^(-1)((5cos x-4s in x)/(sqrt(41))) ...

    Text Solution

    |

  16. x y=(x+y)6na n d(dy)/(dx)=y/x t h e nn= 1 b.2 c. 3 d. 4

    Text Solution

    |

  17. If x+y=3e^2t h e d/(dx)(x^y)=0forx= e^2 b. e^e c. e d. 2e^2

    Text Solution

    |

  18. If f(x)=(x-1)^(100)(x-2)^(2(99))(x-3)^(3(98))…(x-100)^(100), then the ...

    Text Solution

    |

  19. The function f: RvecR satisfies f(x^2)dotf^(x)=f^(prime)(x)dotf^(prime...

    Text Solution

    |

  20. The second derivative of a single valued function parametrically repre...

    Text Solution

    |