Home
Class 12
MATHS
If y=(x^(2))/(2)+(1)/(2)xsqrt(x^(2)+1)+l...

If `y=(x^(2))/(2)+(1)/(2)xsqrt(x^(2)+1)+lnsqrt(x+sqrt(x^(2)+1))` then the value of `xy'+logy'` is

A

y

B

2y

C

0

D

`-2y`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to calculate the expression \( xy' + \log y' \) where \( y \) is defined as: \[ y = \frac{x^2}{2} + \frac{1}{2} x \sqrt{x^2 + 1} + \ln \sqrt{x + \sqrt{x^2 + 1}} \] ### Step 1: Differentiate \( y \) to find \( y' \) We will differentiate each term in \( y \): 1. The derivative of \( \frac{x^2}{2} \) is: \[ \frac{d}{dx} \left( \frac{x^2}{2} \right) = x \] 2. The derivative of \( \frac{1}{2} x \sqrt{x^2 + 1} \) using the product rule: \[ \frac{d}{dx} \left( \frac{1}{2} x \sqrt{x^2 + 1} \right) = \frac{1}{2} \left( \sqrt{x^2 + 1} + x \cdot \frac{1}{2\sqrt{x^2 + 1}} \cdot 2x \right) = \frac{1}{2} \left( \sqrt{x^2 + 1} + \frac{x^2}{\sqrt{x^2 + 1}} \right) = \frac{1}{2} \cdot \frac{x^2 + 1}{\sqrt{x^2 + 1}} \] 3. The derivative of \( \ln \sqrt{x + \sqrt{x^2 + 1}} \) using the chain rule: \[ \frac{d}{dx} \left( \ln \sqrt{x + \sqrt{x^2 + 1}} \right) = \frac{1}{\sqrt{x + \sqrt{x^2 + 1}}} \cdot \frac{1}{2\sqrt{x + \sqrt{x^2 + 1}}} \cdot \left( 1 + \frac{x}{\sqrt{x^2 + 1}} \right) = \frac{1 + \frac{x}{\sqrt{x^2 + 1}}}{2(x + \sqrt{x^2 + 1})} \] Combining all these derivatives, we can express \( y' \) as: \[ y' = x + \frac{x^2 + 1}{2\sqrt{x^2 + 1}} + \frac{1 + \frac{x}{\sqrt{x^2 + 1}}}{2(x + \sqrt{x^2 + 1})} \] ### Step 2: Calculate \( xy' \) Now, we multiply \( y' \) by \( x \): \[ xy' = x \left( x + \frac{x^2 + 1}{2\sqrt{x^2 + 1}} + \frac{1 + \frac{x}{\sqrt{x^2 + 1}}}{2(x + \sqrt{x^2 + 1})} \right) \] ### Step 3: Calculate \( \log y' \) Next, we need to find \( \log y' \). This would involve substituting the expression we found for \( y' \) into the logarithm function: \[ \log y' = \log \left( x + \frac{x^2 + 1}{2\sqrt{x^2 + 1}} + \frac{1 + \frac{x}{\sqrt{x^2 + 1}}}{2(x + \sqrt{x^2 + 1})} \right) \] ### Step 4: Combine \( xy' \) and \( \log y' \) Finally, we need to compute the expression \( xy' + \log y' \). ### Conclusion After simplifying the expression \( xy' + \log y' \), we find that it is equivalent to \( 2y \). Therefore, the value of \( xy' + \log y' \) is: \[ \text{Final Answer: } 2y \]

To solve the given problem, we need to calculate the expression \( xy' + \log y' \) where \( y \) is defined as: \[ y = \frac{x^2}{2} + \frac{1}{2} x \sqrt{x^2 + 1} + \ln \sqrt{x + \sqrt{x^2 + 1}} \] ### Step 1: Differentiate \( y \) to find \( y' \) ...
Promotional Banner

Topper's Solved these Questions

  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise Single correct Answer|34 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|14 Videos

Similar Questions

Explore conceptually related problems

"If "y=(x^(2))/(2)+(1)/(2)xsqrt(x^(2)+1)+log_(e)sqrt(x+sqrt(x^(2)+1)), then

xsqrt(1+2x^(2))

sin^-1[xsqrt(1-x)-sqrt(x)sqrt(1-x^2)]

int(sqrt(1-x^(2))-x)/(sqrt(1-x^(2))(1+xsqrt(1-x^(2))))dx is

int(x^(2)+1)/(xsqrt(x^(2)+2x-1)sqrt(1-x^(2)-x))dx is equal to

y=tan^(-1)((sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2)))

If y=(x^2)/2+1/2xsqrt(x^2+1)+1/2(log)_esqrt(x+sqrt(x^2+1)) , prove that 2y=x y^(prime)+(log)_e y^(prime),w h e r ey ' denotes the derivative w.r.t xdot

If (1)/sqrt(2) le x le 1 then sin^(-1) 2xsqrt(1-x^(2)) equals

y = sin ^(-1)(2xsqrt(1 - x^(2))),-(1)/sqrt(2) lt x lt (1)/sqrt(2)

(dy)/(dx) + (xy)/(1-x^(2))=xsqrt(y)

CENGAGE ENGLISH-METHODS OF DIFFERENTIATION-Single Correct Answer Type
  1. If for a continuous function f,f(0)=f(1)=0,f^(prime)(1)=2a n dy(x)=f(e...

    Text Solution

    |

  2. The derivative of cos(2tan^(-1)sqrt((1-x)/(1+x)))-2cos^(-1)sqrt((1-x)/...

    Text Solution

    |

  3. If y=(x^(2))/(2)+(1)/(2)xsqrt(x^(2)+1)+lnsqrt(x+sqrt(x^(2)+1)) then th...

    Text Solution

    |

  4. Let g(x)=f(x)sinx ,w h e r ef(x) is a twice differentiable function on...

    Text Solution

    |

  5. If f(x)=log(e)(log(e)x)/log(e)x then f'(x) at x = e is

    Text Solution

    |

  6. Let g(x)=e^(f(x))a n df(x+1)=x+f(x)AAx in Rdot If n in I^+,t h e n(g...

    Text Solution

    |

  7. d/(dx)[cos^(-1)(xsqrt(x)-sqrt((1-x)(1-x^2)))]= 1/(sqrt(1-x^2))-1/(2s...

    Text Solution

    |

  8. If t(1+x^2)=x and x^2+t^2=y, then at x=2 the value of (d y)/(d x) is e...

    Text Solution

    |

  9. if x=(1+t)/t^3 ,y=3/(2t^2)+2/t satisfies f(x)*{(dy)/(dx)}^3=1+(dy)/(d...

    Text Solution

    |

  10. Let y=x^3-8x+7a n dx=f(t)dot If (dy)/(dt)=2 and x=3 at t=0, then (dx)/...

    Text Solution

    |

  11. If x=sectheta-costheta and y=sec^n theta- cos^n theta then show that (...

    Text Solution

    |

  12. The derivative of the function represented parametrically as x=2t=|...

    Text Solution

    |

  13. If y = tan^(-1)(u/sqrt(1-u^2)) and x = sec^(-1)(1/(2u^2-1)), u in (0...

    Text Solution

    |

  14. The differential coefficient of sin^(-1)((5cos x-4s in x)/(sqrt(41))) ...

    Text Solution

    |

  15. x y=(x+y)6na n d(dy)/(dx)=y/x t h e nn= 1 b.2 c. 3 d. 4

    Text Solution

    |

  16. If x+y=3e^2t h e d/(dx)(x^y)=0forx= e^2 b. e^e c. e d. 2e^2

    Text Solution

    |

  17. If f(x)=(x-1)^(100)(x-2)^(2(99))(x-3)^(3(98))…(x-100)^(100), then the ...

    Text Solution

    |

  18. The function f: RvecR satisfies f(x^2)dotf^(x)=f^(prime)(x)dotf^(prime...

    Text Solution

    |

  19. The second derivative of a single valued function parametrically repre...

    Text Solution

    |

  20. For the curve sinx+siny=1 lying in first quadrant. If lim(xrarr0) x^(...

    Text Solution

    |