Home
Class 12
MATHS
If f(x)=log(e)(log(e)x)/log(e)x then f'(...

If `f(x)=log_(e)(log_(e)x)/log_(e)x` then `f'(x)` at x = e is

A

0

B

1

C

e

D

`1//2`

Text Solution

AI Generated Solution

The correct Answer is:
To find \( f'(x) \) for the function \( f(x) = \frac{\log_e(\log_e x)}{\log_e x} \) at \( x = e \), we will use the quotient rule for differentiation. The quotient rule states that if \( f(x) = \frac{u(x)}{v(x)} \), then: \[ f'(x) = \frac{v(x)u'(x) - u(x)v'(x)}{(v(x))^2} \] ### Step 1: Identify \( u(x) \) and \( v(x) \) Let: - \( u(x) = \log_e(\log_e x) \) - \( v(x) = \log_e x \) ### Step 2: Differentiate \( u(x) \) and \( v(x) \) 1. **Differentiate \( u(x) \)**: \[ u'(x) = \frac{d}{dx} \log_e(\log_e x) = \frac{1}{\log_e x} \cdot \frac{d}{dx}(\log_e x) = \frac{1}{\log_e x} \cdot \frac{1}{x} = \frac{1}{x \log_e x} \] 2. **Differentiate \( v(x) \)**: \[ v'(x) = \frac{d}{dx} \log_e x = \frac{1}{x} \] ### Step 3: Apply the Quotient Rule Now, we can apply the quotient rule: \[ f'(x) = \frac{v(x)u'(x) - u(x)v'(x)}{(v(x))^2} \] Substituting \( u(x) \), \( u'(x) \), \( v(x) \), and \( v'(x) \): \[ f'(x) = \frac{\log_e x \cdot \frac{1}{x \log_e x} - \log_e(\log_e x) \cdot \frac{1}{x}}{(\log_e x)^2} \] This simplifies to: \[ f'(x) = \frac{\frac{1}{x} - \frac{\log_e(\log_e x)}{x}}{(\log_e x)^2} \] ### Step 4: Simplify the Expression Factor out \( \frac{1}{x} \): \[ f'(x) = \frac{1}{x} \cdot \frac{1 - \log_e(\log_e x)}{(\log_e x)^2} \] ### Step 5: Evaluate at \( x = e \) Now, we substitute \( x = e \): 1. Calculate \( \log_e(e) = 1 \). 2. Calculate \( \log_e(\log_e(e)) = \log_e(1) = 0 \). Substituting these values into the derivative: \[ f'(e) = \frac{1}{e} \cdot \frac{1 - 0}{(1)^2} = \frac{1}{e} \] ### Final Answer Thus, the value of \( f'(x) \) at \( x = e \) is: \[ \boxed{\frac{1}{e}} \]

To find \( f'(x) \) for the function \( f(x) = \frac{\log_e(\log_e x)}{\log_e x} \) at \( x = e \), we will use the quotient rule for differentiation. The quotient rule states that if \( f(x) = \frac{u(x)}{v(x)} \), then: \[ f'(x) = \frac{v(x)u'(x) - u(x)v'(x)}{(v(x))^2} \] ### Step 1: Identify \( u(x) \) and \( v(x) \) ...
Promotional Banner

Topper's Solved these Questions

  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise Single correct Answer|34 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|14 Videos

Similar Questions

Explore conceptually related problems

If f(x)=log_x(lnx) then f'(x) at x=e is

If f(x)=log_(x^(2))(logx) ,then f '(x)at x= e is

If f(x)=|log_(e) x|,then

If f(x)=log_(x) (log x)," then find "f'(x) at x= e

int (dx)/(x(1+log_(e)x)(3+log_(e)x))

If f(x)=log_(e)[log_(e)x] , then what is f' (e) equal to?

If f(x) = log_(e) ((1-x)/(1+x)) , then f((2x)/(1 + x^(2))) is equal to :

f(x)=log_(e)abs(log_(e)x) . Find the domain of f(x).

If f(x) =|log_(e)|x||, then f'(x) equals

I=int \ log_e (log_ex)/(x(log_e x))dx

CENGAGE ENGLISH-METHODS OF DIFFERENTIATION-Single Correct Answer Type
  1. If y=(x^(2))/(2)+(1)/(2)xsqrt(x^(2)+1)+lnsqrt(x+sqrt(x^(2)+1)) then th...

    Text Solution

    |

  2. Let g(x)=f(x)sinx ,w h e r ef(x) is a twice differentiable function on...

    Text Solution

    |

  3. If f(x)=log(e)(log(e)x)/log(e)x then f'(x) at x = e is

    Text Solution

    |

  4. Let g(x)=e^(f(x))a n df(x+1)=x+f(x)AAx in Rdot If n in I^+,t h e n(g...

    Text Solution

    |

  5. d/(dx)[cos^(-1)(xsqrt(x)-sqrt((1-x)(1-x^2)))]= 1/(sqrt(1-x^2))-1/(2s...

    Text Solution

    |

  6. If t(1+x^2)=x and x^2+t^2=y, then at x=2 the value of (d y)/(d x) is e...

    Text Solution

    |

  7. if x=(1+t)/t^3 ,y=3/(2t^2)+2/t satisfies f(x)*{(dy)/(dx)}^3=1+(dy)/(d...

    Text Solution

    |

  8. Let y=x^3-8x+7a n dx=f(t)dot If (dy)/(dt)=2 and x=3 at t=0, then (dx)/...

    Text Solution

    |

  9. If x=sectheta-costheta and y=sec^n theta- cos^n theta then show that (...

    Text Solution

    |

  10. The derivative of the function represented parametrically as x=2t=|...

    Text Solution

    |

  11. If y = tan^(-1)(u/sqrt(1-u^2)) and x = sec^(-1)(1/(2u^2-1)), u in (0...

    Text Solution

    |

  12. The differential coefficient of sin^(-1)((5cos x-4s in x)/(sqrt(41))) ...

    Text Solution

    |

  13. x y=(x+y)6na n d(dy)/(dx)=y/x t h e nn= 1 b.2 c. 3 d. 4

    Text Solution

    |

  14. If x+y=3e^2t h e d/(dx)(x^y)=0forx= e^2 b. e^e c. e d. 2e^2

    Text Solution

    |

  15. If f(x)=(x-1)^(100)(x-2)^(2(99))(x-3)^(3(98))…(x-100)^(100), then the ...

    Text Solution

    |

  16. The function f: RvecR satisfies f(x^2)dotf^(x)=f^(prime)(x)dotf^(prime...

    Text Solution

    |

  17. The second derivative of a single valued function parametrically repre...

    Text Solution

    |

  18. For the curve sinx+siny=1 lying in first quadrant. If lim(xrarr0) x^(...

    Text Solution

    |

  19. If y=((alphax+beta)/(gammax+delta)), then 2(dy)/(dx).(d^(3)y)/(dx^(3))...

    Text Solution

    |

  20. If f(1)=3, f'(1) = 2, f''(1)=4, then (f^-)''(3)= (where f^-1=invers...

    Text Solution

    |