Home
Class 12
MATHS
Suppose that f(x) is differentiable i...

Suppose that `f(x)` is differentiable invertible function `f^(prime)(x)!=0a n dh^(prime)(x)=f(x)dot` Given that `f(1)=f^(prime)(1)=1,h(1)=0` and `g(x)` is inverse of `f(x)` . Let `G(x)=x^2g(x)-x h(g(x))AAx in Rdot` Which of the following is/are correct? `G^(prime)(1)=2` b. `G^(prime)(1)=3` c.`G^(1)=2` d. `G^(1)=3`

A

G''(1) = 2

B

G'(1) = 3

C

G''(1) = 2

D

G''(1) = 3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will analyze the given information and derive the necessary equations to find \( G'(1) \). ### Step 1: Understanding the Functions We are given: - \( f(x) \) is a differentiable and invertible function with \( f'(x) \neq 0 \). - \( h'(x) = f(x) \). - \( f(1) = 1 \), \( f'(1) = 1 \), and \( h(1) = 0 \). - \( g(x) \) is the inverse of \( f(x) \). ### Step 2: Finding \( g(1) \) Since \( g(x) \) is the inverse of \( f(x) \), we have: \[ f(g(x)) = x \] Substituting \( x = 1 \): \[ f(g(1)) = 1 \] Given \( f(1) = 1 \), it follows that: \[ g(1) = 1 \] ### Step 3: Finding \( g'(1) \) Differentiating both sides of \( f(g(x)) = x \) with respect to \( x \): \[ f'(g(x)) \cdot g'(x) = 1 \] Substituting \( x = 1 \): \[ f'(g(1)) \cdot g'(1) = 1 \] Since \( g(1) = 1 \) and \( f'(1) = 1 \): \[ 1 \cdot g'(1) = 1 \implies g'(1) = 1 \] ### Step 4: Defining \( G(x) \) Now we define: \[ G(x) = x^2 g(x) - x h(g(x)) \] ### Step 5: Finding \( G'(x) \) To differentiate \( G(x) \), we apply the product rule and chain rule: \[ G'(x) = \frac{d}{dx}(x^2 g(x)) - \frac{d}{dx}(x h(g(x))) \] Using the product rule on both terms: \[ G'(x) = 2x g(x) + x^2 g'(x) - (h(g(x)) + x h'(g(x)) g'(x)) \] ### Step 6: Evaluating \( G'(1) \) Substituting \( x = 1 \): \[ G'(1) = 2 \cdot 1 \cdot g(1) + 1^2 g'(1) - (h(g(1)) + 1 \cdot h'(g(1)) g'(1)) \] We know: - \( g(1) = 1 \) - \( g'(1) = 1 \) - \( h(g(1)) = h(1) = 0 \) - \( h'(g(1)) = h'(1) = f(1) = 1 \) Now substituting these values: \[ G'(1) = 2 \cdot 1 + 1 - (0 + 1 \cdot 1 \cdot 1) \] This simplifies to: \[ G'(1) = 2 + 1 - 1 = 2 \] ### Conclusion Thus, we find that: \[ G'(1) = 2 \] ### Final Answer The correct option is: - **a. \( G'(1) = 2 \)**

To solve the problem step by step, we will analyze the given information and derive the necessary equations to find \( G'(1) \). ### Step 1: Understanding the Functions We are given: - \( f(x) \) is a differentiable and invertible function with \( f'(x) \neq 0 \). - \( h'(x) = f(x) \). - \( f(1) = 1 \), \( f'(1) = 1 \), and \( h(1) = 0 \). - \( g(x) \) is the inverse of \( f(x) \). ...
Promotional Banner

Topper's Solved these Questions

  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise Single correct Answer|34 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|14 Videos

Similar Questions

Explore conceptually related problems

Suppose that f(x) is differentiable invertible function f^(prime)(x)!=0a n dh^(prime)(x)=f(x)dot Given that f(1)=f^(prime)(1)=1,h(1)=0 and g(x) is inverse of f(x) . Let G(x)=x^2g(x)-x h(g(x))AAx in Rdot Which of the following is/are correct? G^(prime)'(1)=2 b. G^(prime)'(1)=3 c. G^(prime)(1)=2 d. G^(prime)(1)=3

Let f be a twice differentiable function such that f^(prime prime)(x)=-f(x),a n df^(prime)(x)=g(x),h(x)=[f(x)]^2+[g(x)]^2dot Find h(10)ifh(5)=11

Let g(x) be the inverse of f(x) and f'(x)=1/(1+x^(3)) .Find g'(x) in terms of g(x).

Let f(x) be differentiable for real x such that f^(prime)(x)>0on(-oo,-4), f^(prime)(x) 0on(6,oo), If g(x)=f(10-2x), then the value of g^(prime)(2) is a. 1 b. 2 c. 0 d. 4

Let g(x) be the inverse of an invertible function f(x) which is derivable at x=3 . If f(3)=9 and f^(prime)(3)=9 , write the value of g^(prime)(9) .

If y=f(x)=x^3+x^5 and g is the inverse of f find g^(prime)(2)

If the function f(x)=x^3+e^(x/2) and g(x)=f ^(−1)(x) , then the value of g ′ (1) is

Let g(x) be the inverse of an invertible function f(x) which is differentiable at x=c . Then g^(prime)(f(x)) equal. (a) f^(prime)(c) (b) 1/(f^(prime)(c)) (c) f(c) (d) none of these

Let g(x)=2f(x/2)+f(1-x) and f^(primeprime)(x)<0 in 0<=x<=1 then g(x)

If differentiable function f(x) in inverse of g(x) then f^(g(x)) is equal to (g^(x))/((g^(prime)(x))^3) 2. 0 3. (g^(x))/((g^(prime)(x))^2) 4. 1

CENGAGE ENGLISH-METHODS OF DIFFERENTIATION-Single Correct Answer Type
  1. Suppose that f(x) is differentiable invertible function f^(prime)(x...

    Text Solution

    |

  2. The right hand derivative of f(x)=[x]t a npix a tx=7 is (where [.] den...

    Text Solution

    |

  3. If f(x-y)=f(x).g(y)-f(y).g(x) and g(x-y)=g(x).g(y)+f(x).f(y) for all x...

    Text Solution

    |

  4. If xe^(xy)-y=sin^(2)x then (dy)/(dx) at x = 0 is

    Text Solution

    |

  5. about to only mathematics

    Text Solution

    |

  6. If for a continuous function f,f(0)=f(1)=0,f^(prime)(1)=2a n dy(x)=f(e...

    Text Solution

    |

  7. The derivative of cos(2tan^(-1)sqrt((1-x)/(1+x)))-2cos^(-1)sqrt((1-x)/...

    Text Solution

    |

  8. If y=(x^(2))/(2)+(1)/(2)xsqrt(x^(2)+1)+lnsqrt(x+sqrt(x^(2)+1)) then th...

    Text Solution

    |

  9. Let g(x)=f(x)sinx ,w h e r ef(x) is a twice differentiable function on...

    Text Solution

    |

  10. If f(x)=log(e)(log(e)x)/log(e)x then f'(x) at x = e is

    Text Solution

    |

  11. Let g(x)=e^(f(x))a n df(x+1)=x+f(x)AAx in Rdot If n in I^+,t h e n(g...

    Text Solution

    |

  12. d/(dx)[cos^(-1)(xsqrt(x)-sqrt((1-x)(1-x^2)))]= 1/(sqrt(1-x^2))-1/(2s...

    Text Solution

    |

  13. If t(1+x^2)=x and x^2+t^2=y, then at x=2 the value of (d y)/(d x) is e...

    Text Solution

    |

  14. if x=(1+t)/t^3 ,y=3/(2t^2)+2/t satisfies f(x)*{(dy)/(dx)}^3=1+(dy)/(d...

    Text Solution

    |

  15. Let y=x^3-8x+7a n dx=f(t)dot If (dy)/(dt)=2 and x=3 at t=0, then (dx)/...

    Text Solution

    |

  16. If x=sectheta-costheta and y=sec^n theta- cos^n theta then show that (...

    Text Solution

    |

  17. The derivative of the function represented parametrically as x=2t=|...

    Text Solution

    |

  18. If y = tan^(-1)(u/sqrt(1-u^2)) and x = sec^(-1)(1/(2u^2-1)), u in (0...

    Text Solution

    |

  19. The differential coefficient of sin^(-1)((5cos x-4s in x)/(sqrt(41))) ...

    Text Solution

    |

  20. x y=(x+y)6na n d(dy)/(dx)=y/x t h e nn= 1 b.2 c. 3 d. 4

    Text Solution

    |

  21. If x+y=3e^2t h e d/(dx)(x^y)=0forx= e^2 b. e^e c. e d. 2e^2

    Text Solution

    |