Home
Class 12
MATHS
if x=(1+t)/t^3 ,y=3/(2t^2)+2/t satisfies...

if `x=(1+t)/t^3 ,y=3/(2t^2)+2/t` satisfies `f(x)*{(dy)/(dx)}^3=1+(dy)/(dx)` then `f(x)` is:

A

`x`

B

`(x^(2))/(1+X^(2))`

C

`x+x+(1)/(x)`

D

`x-(1)/(x)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the function \( f(x) \) given the relationship: \[ f(x) \left( \frac{dy}{dx} \right)^3 = 1 + \frac{dy}{dx} \] where \( x = \frac{1+t}{t^3} \) and \( y = \frac{3}{2t^2} + \frac{2}{t} \). ### Step 1: Calculate \( \frac{dx}{dt} \) Given: \[ x = \frac{1+t}{t^3} \] We can differentiate \( x \) with respect to \( t \): \[ \frac{dx}{dt} = \frac{d}{dt} \left( \frac{1+t}{t^3} \right) \] Using the quotient rule: \[ \frac{dx}{dt} = \frac{(t^3)(1) - (1+t)(3t^2)}{(t^3)^2} \] Simplifying the numerator: \[ = \frac{t^3 - (3t^2 + 3t^3)}{t^6} = \frac{-2t^3 - 3t^2}{t^6} = \frac{-2t - 3}{t^4} \] ### Step 2: Calculate \( \frac{dy}{dt} \) Given: \[ y = \frac{3}{2t^2} + \frac{2}{t} \] Differentiating \( y \) with respect to \( t \): \[ \frac{dy}{dt} = \frac{d}{dt} \left( \frac{3}{2t^2} \right) + \frac{d}{dt} \left( \frac{2}{t} \right) \] Calculating each term: \[ \frac{dy}{dt} = -\frac{3}{t^3} - \frac{2}{t^2} \] Combining the terms: \[ = -\frac{3 + 2t}{t^3} \] ### Step 3: Calculate \( \frac{dy}{dx} \) Now we can find \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{-\frac{3 + 2t}{t^3}}{\frac{-2t - 3}{t^4}} = \frac{(3 + 2t) t^4}{(2t + 3) t^3} = \frac{(3 + 2t) t}{(2t + 3)} \] ### Step 4: Substitute \( \frac{dy}{dx} \) into the given equation Now substituting \( \frac{dy}{dx} \) into the equation: \[ f(x) \left( \frac{(3 + 2t)t}{(2t + 3)} \right)^3 = 1 + \frac{(3 + 2t)t}{(2t + 3)} \] Let \( \frac{(3 + 2t)t}{(2t + 3)} = k \): \[ f(x) k^3 = 1 + k \] ### Step 5: Solve for \( f(x) \) Rearranging gives: \[ f(x) = \frac{1 + k}{k^3} \] ### Step 6: Substitute back for \( k \) Substituting back for \( k \): \[ k = \frac{(3 + 2t)t}{(2t + 3)} \] Thus: \[ f(x) = \frac{1 + \frac{(3 + 2t)t}{(2t + 3)}}{\left( \frac{(3 + 2t)t}{(2t + 3)} \right)^3} \] ### Step 7: Simplify \( f(x) \) After simplification, we find that: \[ f(x) = x \] ### Final Answer Thus, we conclude that: \[ f(x) = x \]

To solve the problem, we need to find the function \( f(x) \) given the relationship: \[ f(x) \left( \frac{dy}{dx} \right)^3 = 1 + \frac{dy}{dx} \] where \( x = \frac{1+t}{t^3} \) and \( y = \frac{3}{2t^2} + \frac{2}{t} \). ...
Promotional Banner

Topper's Solved these Questions

  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise Single correct Answer|34 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|14 Videos

Similar Questions

Explore conceptually related problems

If x=(1+t)/(t^3),y=3/(2t^2)+2/t , then x((dy)/(dx))^3-(dy)/(dx) is equal to (a) 0 (b) -1 (c) 1 (d) 2

A function is reprersented parametrically by the equations x=(1+t)/(t^3); y=3/(2t^2)+2/tdotT h e nt h ev a l u eof|(dy)/(dx)-x((dy)/(dx))^3| is__________

A function is reprersented parametrically by the equations x=(1+t)/(t^3); y=3/(2t^2)+2/tdotT h e nt h ev a l u eof|(dy)/(dx)-x((dy)/(dx))^3| is__________

A function is reprersented parametrically by the equations x=(1+t)/(t^3); y=3/(2t^2)+2/tdotT h e nt h ev a l u eof(dy)/(dx)-x((dy)/(dx))^3 is__________

If x=(2t)/(1+t^2) , y=(1-t^2)/(1+t^2) , then find (dy)/(dx) .

If x=(1-t^2)/(1+t^2) and y=(2at)/(1+t^2) , then (dy)/(dx)=

If x=(1+logt)/(t^2),\ \ y=(3+2logt)/t ,\ \ find (dy)/(dx) .

If x=(1-t^2)/(1+t^2) and y=(2t)/(1+t^2) ,then (dy)/(dx)=

If x=(1+logt)/(t^2),y=(3+2logt)/t ,"f i n d"(dy)/(dx)dot

If sinx=(2t)/(1+t^2),tany=(2t)/(1-t^2),"f i n d"(dy)/(dx)dot

CENGAGE ENGLISH-METHODS OF DIFFERENTIATION-Single Correct Answer Type
  1. d/(dx)[cos^(-1)(xsqrt(x)-sqrt((1-x)(1-x^2)))]= 1/(sqrt(1-x^2))-1/(2s...

    Text Solution

    |

  2. If t(1+x^2)=x and x^2+t^2=y, then at x=2 the value of (d y)/(d x) is e...

    Text Solution

    |

  3. if x=(1+t)/t^3 ,y=3/(2t^2)+2/t satisfies f(x)*{(dy)/(dx)}^3=1+(dy)/(d...

    Text Solution

    |

  4. Let y=x^3-8x+7a n dx=f(t)dot If (dy)/(dt)=2 and x=3 at t=0, then (dx)/...

    Text Solution

    |

  5. If x=sectheta-costheta and y=sec^n theta- cos^n theta then show that (...

    Text Solution

    |

  6. The derivative of the function represented parametrically as x=2t=|...

    Text Solution

    |

  7. If y = tan^(-1)(u/sqrt(1-u^2)) and x = sec^(-1)(1/(2u^2-1)), u in (0...

    Text Solution

    |

  8. The differential coefficient of sin^(-1)((5cos x-4s in x)/(sqrt(41))) ...

    Text Solution

    |

  9. x y=(x+y)6na n d(dy)/(dx)=y/x t h e nn= 1 b.2 c. 3 d. 4

    Text Solution

    |

  10. If x+y=3e^2t h e d/(dx)(x^y)=0forx= e^2 b. e^e c. e d. 2e^2

    Text Solution

    |

  11. If f(x)=(x-1)^(100)(x-2)^(2(99))(x-3)^(3(98))…(x-100)^(100), then the ...

    Text Solution

    |

  12. The function f: RvecR satisfies f(x^2)dotf^(x)=f^(prime)(x)dotf^(prime...

    Text Solution

    |

  13. The second derivative of a single valued function parametrically repre...

    Text Solution

    |

  14. For the curve sinx+siny=1 lying in first quadrant. If lim(xrarr0) x^(...

    Text Solution

    |

  15. If y=((alphax+beta)/(gammax+delta)), then 2(dy)/(dx).(d^(3)y)/(dx^(3))...

    Text Solution

    |

  16. If f(1)=3, f'(1) = 2, f''(1)=4, then (f^-)''(3)= (where f^-1=invers...

    Text Solution

    |

  17. If the third derivative of (x^(4))/((x-1)(x-2)) is (-12k)/((x-2)^(4))+...

    Text Solution

    |

  18. If (a+bx)e^(y/x)=x , Prove that x^3(d^2y)/(dx^2)=(x(dy)/(dx)-y)^2

    Text Solution

    |

  19. If R=([1+((dy)/(dx))^2]^(-3//2))/((d^2y)/(dx2)) , thenR^(2//3) can be ...

    Text Solution

    |

  20. If x=2cost-cos2t ,\ \ y=2sint-sin2t , find (d^2y)/(dx^2) at t=pi/2 .

    Text Solution

    |