Home
Class 12
MATHS
Let y=x^3-8x+7a n dx=f(t)dot If (dy)/(dt...

Let `y=x^3-8x+7a n dx=f(t)dot` If `(dy)/(dt)=2` and `x=3` at `t=0,` then `(dx)/(dt)` at `t=0` is given by 1 (b) `(19)/2` (c) `2/(19)` (d) none of these

A

1

B

`(19)/(2)`

C

`(2)/(19)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will use the chain rule of differentiation. Let's break it down: ### Step 1: Understand the relationship between the variables We have: - \( y = x^3 - 8x + 7 \) - \( x = f(t) \) - Given \( \frac{dy}{dt} = 2 \) and \( x = 3 \) when \( t = 0 \). ### Step 2: Differentiate \( y \) with respect to \( t \) Using the chain rule, we can express \( \frac{dy}{dt} \) as: \[ \frac{dy}{dt} = \frac{dy}{dx} \cdot \frac{dx}{dt} \] ### Step 3: Find \( \frac{dy}{dx} \) First, we need to differentiate \( y \) with respect to \( x \): \[ \frac{dy}{dx} = \frac{d}{dx}(x^3 - 8x + 7) = 3x^2 - 8 \] ### Step 4: Substitute \( x = 3 \) into \( \frac{dy}{dx} \) Now, we will substitute \( x = 3 \) into \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = 3(3^2) - 8 = 3(9) - 8 = 27 - 8 = 19 \] ### Step 5: Substitute into the chain rule equation Now we know \( \frac{dy}{dt} = 2 \) and \( \frac{dy}{dx} = 19 \). We can substitute these values into the chain rule equation: \[ 2 = 19 \cdot \frac{dx}{dt} \] ### Step 6: Solve for \( \frac{dx}{dt} \) Now, we can solve for \( \frac{dx}{dt} \): \[ \frac{dx}{dt} = \frac{2}{19} \] ### Conclusion Thus, the value of \( \frac{dx}{dt} \) at \( t = 0 \) is: \[ \frac{2}{19} \] ### Answer The correct option is (c) \( \frac{2}{19} \). ---

To solve the problem step by step, we will use the chain rule of differentiation. Let's break it down: ### Step 1: Understand the relationship between the variables We have: - \( y = x^3 - 8x + 7 \) - \( x = f(t) \) - Given \( \frac{dy}{dt} = 2 \) and \( x = 3 \) when \( t = 0 \). ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise Single correct Answer|34 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|14 Videos

Similar Questions

Explore conceptually related problems

Let y=x^3-8x+7a n dx=f(t)dotIf(dy)/(dx)=2a n dx=3a tt=0, then find the value of (dx)/(dt)a tt=0.

Let y=x^3-8x+7a n dx=f(t)dotI(dy)/(dt)=2a n dx=3 a t t = 0, then find the value of (dx)/(dt) at t=0.

Let y=x^3-8x+7 and x=f(t). ( dy ) / ( dx ) = 2 and x=3 at t=0, then find the value of (dx)/(dt) at t=0.

If y=sinx and x=3t then (dy)/(dt) will be

If f^(prime)(x)=sqrt(2x^2-1) and y=f(x^2),t h e n(dy)/(dx) at x=1 is (a)2 (b) 1 (c) -2 (d) none of these

If f(x)=int_0^1(dt)/(1+|x-t|) ,then f^(prime)(1/2) is equal to (a)0 (b) 1/2 (c) 1 (d) none of these

If x^2+y^2=t-1/t and x^4+y^4=t^2+1/t^2, then x^3y (dy)/(dx)= (a) 0 (b) 1 (c) -1 (d) none of these

x=f(t) satisfies (d^2x)/dt^2=2t+3 and for t=0, x=0, dx/dt=0 , then f(t) is given by (A) t^3+t^2/2+t (B) (2t^3)/3+(3t^2)/2+t (C) t^3/3+(3t^2)/2 (D) none of these

If x=(1+t)/(t^3),y=3/(2t^2)+2/t , then x((dy)/(dx))^3-(dy)/(dx) is equal to (a) 0 (b) -1 (c) 1 (d) 2

If x=a t^2,\ \ y=2\ a t , then (d^2y)/(dx^2)= -1/(t^2) (b) 1/(2\ a t^3) (c) -1/(t^3) (d) -1/(2\ a t^3)