Home
Class 12
MATHS
If x=sectheta-costheta and y=sec^n theta...

If `x=sectheta-costheta` and `y=sec^n theta- cos^n theta` then show that `(x^2+4)((dy)/(dx))^2=n^2(y^2+4)`

A

8

B

16

C

64

D

49

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to show that: \[ (x^2 + 4) \left( \frac{dy}{dx} \right)^2 = n^2 (y^2 + 4) \] where \( x = \sec \theta - \cos \theta \) and \( y = \sec^n \theta - \cos^n \theta \). ### Step 1: Find \(\frac{dy}{d\theta}\) and \(\frac{dx}{d\theta}\) First, we differentiate \(y\) and \(x\) with respect to \(\theta\). 1. **Differentiate \(y\)**: \[ y = \sec^n \theta - \cos^n \theta \] Using the chain rule: \[ \frac{dy}{d\theta} = n \sec^{n} \theta \tan \theta - n \cos^{n-1} \theta \cdot (-\sin \theta) \] Simplifying this gives: \[ \frac{dy}{d\theta} = n \sec^{n} \theta \tan \theta + n \cos^{n-1} \theta \sin \theta \] 2. **Differentiate \(x\)**: \[ x = \sec \theta - \cos \theta \] Again using the chain rule: \[ \frac{dx}{d\theta} = \sec \theta \tan \theta + \sin \theta \] ### Step 2: Find \(\frac{dy}{dx}\) Using the chain rule: \[ \frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} \] Substituting the derivatives we found: \[ \frac{dy}{dx} = \frac{n \sec^{n} \theta \tan \theta + n \cos^{n-1} \theta \sin \theta}{\sec \theta \tan \theta + \sin \theta} \] ### Step 3: Simplify \(\frac{dy}{dx}\) Notice that: \[ \frac{dy}{dx} = n \cdot \frac{\sec^n \theta - \cos^n \theta}{\sec \theta - \cos \theta} = n \cdot \frac{y}{x} \] ### Step 4: Square \(\frac{dy}{dx}\) Now we take the square: \[ \left( \frac{dy}{dx} \right)^2 = n^2 \cdot \left( \frac{y}{x} \right)^2 \] ### Step 5: Substitute into the original equation We substitute this back into the equation we need to prove: \[ (x^2 + 4) \left( \frac{dy}{dx} \right)^2 = (x^2 + 4) n^2 \cdot \frac{y^2}{x^2} \] ### Step 6: Use the component or dividendo Using the component or dividendo: \[ \frac{y^2 + 4}{x^2 + 4} = \frac{y^2}{x^2} \] Thus, we can write: \[ (x^2 + 4) \left( \frac{dy}{dx} \right)^2 = n^2 (y^2 + 4) \] ### Conclusion We have shown that: \[ (x^2 + 4) \left( \frac{dy}{dx} \right)^2 = n^2 (y^2 + 4) \] This completes the proof.

To solve the problem, we need to show that: \[ (x^2 + 4) \left( \frac{dy}{dx} \right)^2 = n^2 (y^2 + 4) \] where \( x = \sec \theta - \cos \theta \) and \( y = \sec^n \theta - \cos^n \theta \). ...
Promotional Banner

Topper's Solved these Questions

  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise Single correct Answer|34 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|14 Videos

Similar Questions

Explore conceptually related problems

If x=cos e ctheta-sintheta and y=cosec^ntheta-sin^ntheta, then show that (x^2+4)((dy)/(dx))^2=n^2(y^2+4)dot

If x=cos e ctheta-sinthetaa n dy=cos e c^ntheta-sin^ntheta, then show that (x^2+4)((dy)/(dx))^2=n^2(y^2+4)dot

If x=cos e ctheta-sinthetaa n dy=cos e c^ntheta-sin^ntheta, then show that (x^2+4)((dy)/(dx))^2=n^2(y^2+4)dot

If x = 2 cos theta - cos 2theta and y = 2 sin theta - sin 2theta then prove that : (dy)/(dx)=tan (3 theta)/(2)

If x = a cos theta + b sin theta and y =asin theta-b cos theta , then prove that y^2 (d^2y)/(dx^2)-x(dy)/(dx)+y=0

If cos ec theta - sin theta = m and sec theta - cos theta = n, then show that (m ^(2) n ) ^(2//3) + (mn ^(2)) ^( 2//3) = 1.

If x=3costheta-cos^3theta y=3sintheta-sin^3theta find dy/dx

If cosectheta-sintheta=m a n d sectheta-costheta=n ,"eliminate"theta

If x +y= 3-cos4theta and x-y=4sin2theta then

If x=2costheta-cos2theta"and"y=2sintheta-sin2theta" Prove that" (dy)/(dx)=tan((3theta)/2)dot

CENGAGE ENGLISH-METHODS OF DIFFERENTIATION-Single Correct Answer Type
  1. if x=(1+t)/t^3 ,y=3/(2t^2)+2/t satisfies f(x)*{(dy)/(dx)}^3=1+(dy)/(d...

    Text Solution

    |

  2. Let y=x^3-8x+7a n dx=f(t)dot If (dy)/(dt)=2 and x=3 at t=0, then (dx)/...

    Text Solution

    |

  3. If x=sectheta-costheta and y=sec^n theta- cos^n theta then show that (...

    Text Solution

    |

  4. The derivative of the function represented parametrically as x=2t=|...

    Text Solution

    |

  5. If y = tan^(-1)(u/sqrt(1-u^2)) and x = sec^(-1)(1/(2u^2-1)), u in (0...

    Text Solution

    |

  6. The differential coefficient of sin^(-1)((5cos x-4s in x)/(sqrt(41))) ...

    Text Solution

    |

  7. x y=(x+y)6na n d(dy)/(dx)=y/x t h e nn= 1 b.2 c. 3 d. 4

    Text Solution

    |

  8. If x+y=3e^2t h e d/(dx)(x^y)=0forx= e^2 b. e^e c. e d. 2e^2

    Text Solution

    |

  9. If f(x)=(x-1)^(100)(x-2)^(2(99))(x-3)^(3(98))…(x-100)^(100), then the ...

    Text Solution

    |

  10. The function f: RvecR satisfies f(x^2)dotf^(x)=f^(prime)(x)dotf^(prime...

    Text Solution

    |

  11. The second derivative of a single valued function parametrically repre...

    Text Solution

    |

  12. For the curve sinx+siny=1 lying in first quadrant. If lim(xrarr0) x^(...

    Text Solution

    |

  13. If y=((alphax+beta)/(gammax+delta)), then 2(dy)/(dx).(d^(3)y)/(dx^(3))...

    Text Solution

    |

  14. If f(1)=3, f'(1) = 2, f''(1)=4, then (f^-)''(3)= (where f^-1=invers...

    Text Solution

    |

  15. If the third derivative of (x^(4))/((x-1)(x-2)) is (-12k)/((x-2)^(4))+...

    Text Solution

    |

  16. If (a+bx)e^(y/x)=x , Prove that x^3(d^2y)/(dx^2)=(x(dy)/(dx)-y)^2

    Text Solution

    |

  17. If R=([1+((dy)/(dx))^2]^(-3//2))/((d^2y)/(dx2)) , thenR^(2//3) can be ...

    Text Solution

    |

  18. If x=2cost-cos2t ,\ \ y=2sint-sin2t , find (d^2y)/(dx^2) at t=pi/2 .

    Text Solution

    |

  19. If y^3-y=2x ,t h e n(x^2-1/(27))(d^2y)/(dx^2)+x(dy)/dx= y b. y/3 c. y...

    Text Solution

    |

  20. Let f(x)=(g(x))/x w h e nx!=0 and f(0)=0. If g(0)=g^(prime)(0)=0a n d...

    Text Solution

    |