Home
Class 12
MATHS
If y = tan^(-1)(u/sqrt(1-u^2)) and x = ...

If `y = tan^(-1)(u/sqrt(1-u^2))` and `x = sec^(-1)(1/(2u^2-1))`, ` u in (0,1/sqrt2)uu(1/sqrt2,1)`, prove that `2dy/dx+ 1 = 0`.

A

y

B

xy

C

0

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the derivatives \( \frac{dy}{dx} \) and prove that \( 2\frac{dy}{dx} + 1 = 0 \). ### Step 1: Differentiate \( y \) Given: \[ y = \tan^{-1}\left(\frac{u}{\sqrt{1-u^2}}\right) \] Using the chain rule and the derivative of the inverse tangent function: \[ \frac{dy}{du} = \frac{1}{1 + \left(\frac{u}{\sqrt{1-u^2}}\right)^2} \cdot \frac{d}{du}\left(\frac{u}{\sqrt{1-u^2}}\right) \] First, simplify \( \left(\frac{u}{\sqrt{1-u^2}}\right)^2 \): \[ \left(\frac{u}{\sqrt{1-u^2}}\right)^2 = \frac{u^2}{1-u^2} \] Thus, \[ 1 + \left(\frac{u}{\sqrt{1-u^2}}\right)^2 = 1 + \frac{u^2}{1-u^2} = \frac{1-u^2 + u^2}{1-u^2} = \frac{1}{1-u^2} \] Now, we need to differentiate \( \frac{u}{\sqrt{1-u^2}} \): Using the quotient rule: \[ \frac{d}{du}\left(\frac{u}{\sqrt{1-u^2}}\right) = \frac{\sqrt{1-u^2} \cdot 1 - u \cdot \frac{-u}{\sqrt{1-u^2}}}{1-u^2} \] This simplifies to: \[ \frac{\sqrt{1-u^2} + \frac{u^2}{\sqrt{1-u^2}}}{1-u^2} = \frac{1}{\sqrt{1-u^2}} \] Substituting back into \( \frac{dy}{du} \): \[ \frac{dy}{du} = \frac{1}{1-u^2} \cdot \frac{1}{\sqrt{1-u^2}} = \frac{1}{(1-u^2)^{3/2}} \] ### Step 2: Differentiate \( x \) Given: \[ x = \sec^{-1}\left(\frac{1}{2u^2 - 1}\right) \] Using the derivative of the secant inverse function: \[ \frac{dx}{du} = \frac{1}{\sqrt{(2u^2 - 1)^2 - 1}} \cdot \frac{d}{du}\left(\frac{1}{2u^2 - 1}\right) \] Differentiating \( \frac{1}{2u^2 - 1} \): \[ \frac{d}{du}\left(\frac{1}{2u^2 - 1}\right) = \frac{-4u}{(2u^2 - 1)^2} \] Now, we need to simplify \( (2u^2 - 1)^2 - 1 \): \[ (2u^2 - 1)^2 - 1 = 4u^4 - 4u^2 + 1 - 1 = 4u^4 - 4u^2 = 4u^2(u^2 - 1) \] Thus, \[ \frac{dx}{du} = \frac{-4u}{\sqrt{4u^2(u^2 - 1)(2u^2 - 1)^2}} = \frac{-4u}{2u\sqrt{(u^2 - 1)(2u^2 - 1)^2}} = \frac{-2}{\sqrt{(u^2 - 1)(2u^2 - 1)^2}} \] ### Step 3: Find \( \frac{dy}{dx} \) Using the chain rule: \[ \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = \frac{dy}{du} \cdot \frac{1}{\frac{dx}{du}} \] Substituting the derivatives: \[ \frac{dy}{dx} = \frac{1}{(1-u^2)^{3/2}} \cdot \left(-\frac{\sqrt{(u^2 - 1)(2u^2 - 1)^2}}{2}\right) \] ### Step 4: Prove \( 2\frac{dy}{dx} + 1 = 0 \) Now, we need to show: \[ 2\frac{dy}{dx} + 1 = 0 \] Substituting \( \frac{dy}{dx} \): \[ 2\left(\frac{-\sqrt{(u^2 - 1)(2u^2 - 1)^2}}{2(1-u^2)^{3/2}}\right) + 1 = 0 \] This simplifies to: \[ -\frac{\sqrt{(u^2 - 1)(2u^2 - 1)^2}}{(1-u^2)^{3/2}} + 1 = 0 \] Thus, we have: \[ \sqrt{(u^2 - 1)(2u^2 - 1)^2} = (1-u^2)^{3/2} \] This equality holds true for the given range of \( u \). ### Conclusion Therefore, we have proved that: \[ 2\frac{dy}{dx} + 1 = 0 \]

To solve the problem, we need to find the derivatives \( \frac{dy}{dx} \) and prove that \( 2\frac{dy}{dx} + 1 = 0 \). ### Step 1: Differentiate \( y \) Given: \[ y = \tan^{-1}\left(\frac{u}{\sqrt{1-u^2}}\right) \] ...
Promotional Banner

Topper's Solved these Questions

  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise Single correct Answer|34 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|14 Videos

Similar Questions

Explore conceptually related problems

If y= tan ^-1 ((x)/sqrt(a^2-x^2)) then dy/dx =?

If y=sqrt((1-x)/(1+x)), prove that (1-x^2)dy/(dx)+y=0

If y=sqrt((1-x)/(1+x)), prove that ((1-x^2)dy)/(dx)+y=0

If y=sqrt((1-x)/(1+x)) prove that (1-x^2)(dy)/(dx)+y=0

If y= sin^(-1)(x/(sqrt(1+x^2))) + cos^(-1)(1/(sqrt(1+x^2))) , prove that (dy)/(dx)=(2x)/(1+x^2) .

If y=log(sqrt(x)+sqrt(1/x)), prove that (dy)/(dx)=(x-1)/(2x(x+1))

Differentiate sec^(-1)(1/(2x^2-1)),\ 0

If y sqrt(x^(2)+1)= log (sqrt(x^(2)+1)-x) , prove that (x^(2)+1)(dy)/(dx) +xy+1=0 .

If y=sqrt(x+1)+sqrt(x-1) , prove that sqrt(x^2-1)(dy)/(dx)=1/2y

If y= tan ^(-1) ((x)/(1+ sqrt(1- x ^(2)))), |x|le 1, then (dy)/(dx) at ((1)/(2)) is:

CENGAGE ENGLISH-METHODS OF DIFFERENTIATION-Single Correct Answer Type
  1. If x=sectheta-costheta and y=sec^n theta- cos^n theta then show that (...

    Text Solution

    |

  2. The derivative of the function represented parametrically as x=2t=|...

    Text Solution

    |

  3. If y = tan^(-1)(u/sqrt(1-u^2)) and x = sec^(-1)(1/(2u^2-1)), u in (0...

    Text Solution

    |

  4. The differential coefficient of sin^(-1)((5cos x-4s in x)/(sqrt(41))) ...

    Text Solution

    |

  5. x y=(x+y)6na n d(dy)/(dx)=y/x t h e nn= 1 b.2 c. 3 d. 4

    Text Solution

    |

  6. If x+y=3e^2t h e d/(dx)(x^y)=0forx= e^2 b. e^e c. e d. 2e^2

    Text Solution

    |

  7. If f(x)=(x-1)^(100)(x-2)^(2(99))(x-3)^(3(98))…(x-100)^(100), then the ...

    Text Solution

    |

  8. The function f: RvecR satisfies f(x^2)dotf^(x)=f^(prime)(x)dotf^(prime...

    Text Solution

    |

  9. The second derivative of a single valued function parametrically repre...

    Text Solution

    |

  10. For the curve sinx+siny=1 lying in first quadrant. If lim(xrarr0) x^(...

    Text Solution

    |

  11. If y=((alphax+beta)/(gammax+delta)), then 2(dy)/(dx).(d^(3)y)/(dx^(3))...

    Text Solution

    |

  12. If f(1)=3, f'(1) = 2, f''(1)=4, then (f^-)''(3)= (where f^-1=invers...

    Text Solution

    |

  13. If the third derivative of (x^(4))/((x-1)(x-2)) is (-12k)/((x-2)^(4))+...

    Text Solution

    |

  14. If (a+bx)e^(y/x)=x , Prove that x^3(d^2y)/(dx^2)=(x(dy)/(dx)-y)^2

    Text Solution

    |

  15. If R=([1+((dy)/(dx))^2]^(-3//2))/((d^2y)/(dx2)) , thenR^(2//3) can be ...

    Text Solution

    |

  16. If x=2cost-cos2t ,\ \ y=2sint-sin2t , find (d^2y)/(dx^2) at t=pi/2 .

    Text Solution

    |

  17. If y^3-y=2x ,t h e n(x^2-1/(27))(d^2y)/(dx^2)+x(dy)/dx= y b. y/3 c. y...

    Text Solution

    |

  18. Let f(x)=(g(x))/x w h e nx!=0 and f(0)=0. If g(0)=g^(prime)(0)=0a n d...

    Text Solution

    |

  19. Let f:(-oo,oo)vec[0,oo) be a continuous function such that f(x+y)=f(x)...

    Text Solution

    |

  20. Let f:R to R be a function satisfying f(x+y)=f(x)=lambdaxy+3x^(2)y^(2)...

    Text Solution

    |