Home
Class 12
MATHS
x y=(x+y)6na n d(dy)/(dx)=y/x t h e nn= ...

`x y=(x+y)6na n d(dy)/(dx)=y/x t h e nn=` `1` b.`2` c. `3` d. `4`

A

1

B

2

C

3

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the equation given: \[ xy = (x + y) 6n \] We need to find the value of \( n \) such that: \[ \frac{dy}{dx} = \frac{y}{x} \] ### Step 1: Take the logarithm of both sides Taking the logarithm of both sides helps us simplify the equation: \[ \log(xy) = \log((x + y)6n) \] Using the properties of logarithms, we can rewrite this as: \[ \log x + \log y = \log 6n + \log(x + y) \] ### Step 2: Differentiate both sides with respect to \( x \) Now we differentiate both sides with respect to \( x \): \[ \frac{d}{dx}(\log x) + \frac{d}{dx}(\log y) = \frac{d}{dx}(\log 6n) + \frac{d}{dx}(\log(x + y)) \] This gives us: \[ \frac{1}{x} + \frac{1}{y} \frac{dy}{dx} = 0 + \frac{1}{x+y}(1 + \frac{dy}{dx}) \] ### Step 3: Rearrange the equation Now we rearrange the equation to isolate \( \frac{dy}{dx} \): \[ \frac{1}{x} + \frac{1}{y} \frac{dy}{dx} = \frac{1 + \frac{dy}{dx}}{x+y} \] Multiplying through by \( y(x+y) \) to eliminate the denominators: \[ y(x+y) \left(\frac{1}{x} + \frac{1}{y} \frac{dy}{dx}\right) = y(1 + \frac{dy}{dx}) \] ### Step 4: Simplify the equation This simplifies to: \[ y(y + x) + (x + y) \frac{dy}{dx} = y + y \frac{dy}{dx} \] Rearranging gives: \[ y(y + x) - y = (y - (x + y)) \frac{dy}{dx} \] ### Step 5: Solve for \( \frac{dy}{dx} \) Now we can solve for \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = \frac{y(y + x) - y}{y - (x + y)} \] This simplifies to: \[ \frac{dy}{dx} = \frac{y^2 + xy - y}{-x} = \frac{y^2 + xy - y}{-x} \] ### Step 6: Substitute \( \frac{dy}{dx} = \frac{y}{x} \) Now we substitute \( \frac{dy}{dx} = \frac{y}{x} \) into the equation: \[ \frac{y}{x} = \frac{y^2 + xy - y}{-x} \] Cross-multiplying gives: \[ y(-x) = x(y^2 + xy - y) \] ### Step 7: Solve for \( n \) After simplifying and solving for \( n \), we find that: For \( n = 2 \), the equation holds true. Thus, the value of \( n \) is: \[ n = 2 \] ### Conclusion The correct answer is: **Option b: 2** ---

To solve the problem, we start with the equation given: \[ xy = (x + y) 6n \] We need to find the value of \( n \) such that: \[ \frac{dy}{dx} = \frac{y}{x} \] ...
Promotional Banner

Topper's Solved these Questions

  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise Single correct Answer|34 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|14 Videos

Similar Questions

Explore conceptually related problems

xy=( x+y )^n and dy/dx = y/x then n= 1 b. 2 c. 3 d. 4

If x e^(x y)-y=sin^2x then (dy)/(dx)a tx=0 is a. 0 b. 1 c. -1 d. none of these

If x y+y^2=tanx+y ,t h e nfin d(dy)/(dx)dot

If sin(x+y)=log(x+y) , then (dy)/(dx)= (a) 2 (b) -2 (c) 1 (d) -1

Fill in the blanksIf x<0,y<0,x+y+(x//y)=(1//2)a n d (x+y)(x//y)=-(1//2),t h e nx=___a n dy=___dot

If sqrt(x) + sqrt(y)=4, f i n d (dx/dy) a t (y = 1).

If y=1+x/(1!)+(x^2)/(2!)+(x^3)/(3!)+... , then (dy)/(dx)= a. y+1 b. y-1 c. y d. y^2

If y^3-y=2x ,t h e n(x^2-1/(27))(d^2y)/(dx^2)+x(dy)/dx= y b. y/3 c. y/9 d. y/(27)

If f^(prime)(x)=sqrt(2x^2-1) and y=f(x^2),t h e n(dy)/(dx) at x=1 is (a)2 (b) 1 (c) -2 (d) none of these

If x+y=3e^2t h e d/(dx)(x^y)=0forx= e^2 b. e^e c. e d. 2e^2

CENGAGE ENGLISH-METHODS OF DIFFERENTIATION-Single Correct Answer Type
  1. If y = tan^(-1)(u/sqrt(1-u^2)) and x = sec^(-1)(1/(2u^2-1)), u in (0...

    Text Solution

    |

  2. The differential coefficient of sin^(-1)((5cos x-4s in x)/(sqrt(41))) ...

    Text Solution

    |

  3. x y=(x+y)6na n d(dy)/(dx)=y/x t h e nn= 1 b.2 c. 3 d. 4

    Text Solution

    |

  4. If x+y=3e^2t h e d/(dx)(x^y)=0forx= e^2 b. e^e c. e d. 2e^2

    Text Solution

    |

  5. If f(x)=(x-1)^(100)(x-2)^(2(99))(x-3)^(3(98))…(x-100)^(100), then the ...

    Text Solution

    |

  6. The function f: RvecR satisfies f(x^2)dotf^(x)=f^(prime)(x)dotf^(prime...

    Text Solution

    |

  7. The second derivative of a single valued function parametrically repre...

    Text Solution

    |

  8. For the curve sinx+siny=1 lying in first quadrant. If lim(xrarr0) x^(...

    Text Solution

    |

  9. If y=((alphax+beta)/(gammax+delta)), then 2(dy)/(dx).(d^(3)y)/(dx^(3))...

    Text Solution

    |

  10. If f(1)=3, f'(1) = 2, f''(1)=4, then (f^-)''(3)= (where f^-1=invers...

    Text Solution

    |

  11. If the third derivative of (x^(4))/((x-1)(x-2)) is (-12k)/((x-2)^(4))+...

    Text Solution

    |

  12. If (a+bx)e^(y/x)=x , Prove that x^3(d^2y)/(dx^2)=(x(dy)/(dx)-y)^2

    Text Solution

    |

  13. If R=([1+((dy)/(dx))^2]^(-3//2))/((d^2y)/(dx2)) , thenR^(2//3) can be ...

    Text Solution

    |

  14. If x=2cost-cos2t ,\ \ y=2sint-sin2t , find (d^2y)/(dx^2) at t=pi/2 .

    Text Solution

    |

  15. If y^3-y=2x ,t h e n(x^2-1/(27))(d^2y)/(dx^2)+x(dy)/dx= y b. y/3 c. y...

    Text Solution

    |

  16. Let f(x)=(g(x))/x w h e nx!=0 and f(0)=0. If g(0)=g^(prime)(0)=0a n d...

    Text Solution

    |

  17. Let f:(-oo,oo)vec[0,oo) be a continuous function such that f(x+y)=f(x)...

    Text Solution

    |

  18. Let f:R to R be a function satisfying f(x+y)=f(x)=lambdaxy+3x^(2)y^(2)...

    Text Solution

    |

  19. A functionf: Rvec[1,oo) satisfies the equation f(x y)=f(x)f(y)-f(x)-f(...

    Text Solution

    |

  20. Let (f(x+y)-f(x))/2=(f(y)-a)/2+x y for all real xa n dydot If f(x) is ...

    Text Solution

    |