Home
Class 12
MATHS
If f(x)=(x-1)^(100)(x-2)^(2(99))(x-3)^(3...

If `f(x)=(x-1)^(100)(x-2)^(2(99))(x-3)^(3(98))…(x-100)^(100),` then the value of `(f'(101))/(f(101))` is

A

5050

B

2575

C

3030

D

1250

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \(\frac{f'(101)}{f(101)}\) where \[ f(x) = (x-1)^{100} (x-2)^{2(99)} (x-3)^{3(98)} \cdots (x-100)^{100}. \] ### Step 1: Rewrite the function in a summation form We can express \(f(x)\) in a more general form: \[ f(x) = \prod_{i=1}^{100} (x-i)^{i(101-i)}. \] ### Step 2: Take the logarithm of \(f(x)\) Taking the logarithm of both sides gives: \[ \log f(x) = \sum_{i=1}^{100} i(101-i) \log(x-i). \] ### Step 3: Differentiate both sides with respect to \(x\) Using the chain rule, we differentiate: \[ \frac{f'(x)}{f(x)} = \sum_{i=1}^{100} i(101-i) \cdot \frac{1}{x-i}. \] ### Step 4: Substitute \(x = 101\) Now we need to evaluate this at \(x = 101\): \[ \frac{f'(101)}{f(101)} = \sum_{i=1}^{100} i(101-i) \cdot \frac{1}{101-i}. \] ### Step 5: Simplify the summation Notice that \( \frac{1}{101-i} \) cancels out with \( (101-i) \): \[ \frac{f'(101)}{f(101)} = \sum_{i=1}^{100} i. \] ### Step 6: Calculate the sum of the first 100 natural numbers The sum of the first \(n\) natural numbers is given by the formula: \[ \sum_{i=1}^{n} i = \frac{n(n+1)}{2}. \] For \(n = 100\): \[ \sum_{i=1}^{100} i = \frac{100 \cdot 101}{2} = 5050. \] ### Final Answer Thus, the value of \(\frac{f'(101)}{f(101)}\) is \[ \boxed{5050}. \]

To solve the problem, we need to find the value of \(\frac{f'(101)}{f(101)}\) where \[ f(x) = (x-1)^{100} (x-2)^{2(99)} (x-3)^{3(98)} \cdots (x-100)^{100}. \] ### Step 1: Rewrite the function in a summation form ...
Promotional Banner

Topper's Solved these Questions

  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise Single correct Answer|34 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|14 Videos

Similar Questions

Explore conceptually related problems

"If "f(x)=(x-1)^(4)(x-2)^(3)(x-3)^(2)(x-4), then the value of f'''(1)+f''(2)+f'(3)+f'(4) equals

If f (x )= (x-1) ^(4) (x-2) ^(3) (x-3) ^(2) then the value of f '(1) +f''(2) +f''(3) is:

Let f(x)=sin^(-1)((2x)/(1+x^(2))) and g(x)=cos^(-1)((x^(2)-1)/(x^(2)+1)) . Then tha value of f(10)-g(100) is equal to

If f(x) = (x + 1)/(x-1) , then the value of f{f(3)} is :

If f(x)=prod_(n=1)^(100)(x-n)^(n(101-n)) ; then (f(101))/(f'(101))=

If (x^2+x−2)/(x+3) -1) f(x) then find the value of lim_(x->-1) f(x)

If f(x) = x^(2) and g(x) = (1)/(x^(3)) . Then the value of (f(x)+g(x))/(f(-x)-g(-x)) at x = 2 is

For x in R , x ne0, 1, let f_(0)(x)=(1)/(1-x) and f_(n+1)(x)=f_(0)(f_(n)(x)),n=0,1,2….. Then the value of f_(100)(3)+f_(1)((2)/(3))+f_(2)((3)/(2)) is equal to

If the number of terms in the expansion of (1+x)^(101)(1+x^(2)-x)^(100) is n, then the value of (n)/(25) is euqal to

Let lim_(xto1)(x^(a)-ax+a-1)/((x-1)^(2))=f(a) . The value of f(101) equals

CENGAGE ENGLISH-METHODS OF DIFFERENTIATION-Single Correct Answer Type
  1. x y=(x+y)6na n d(dy)/(dx)=y/x t h e nn= 1 b.2 c. 3 d. 4

    Text Solution

    |

  2. If x+y=3e^2t h e d/(dx)(x^y)=0forx= e^2 b. e^e c. e d. 2e^2

    Text Solution

    |

  3. If f(x)=(x-1)^(100)(x-2)^(2(99))(x-3)^(3(98))…(x-100)^(100), then the ...

    Text Solution

    |

  4. The function f: RvecR satisfies f(x^2)dotf^(x)=f^(prime)(x)dotf^(prime...

    Text Solution

    |

  5. The second derivative of a single valued function parametrically repre...

    Text Solution

    |

  6. For the curve sinx+siny=1 lying in first quadrant. If lim(xrarr0) x^(...

    Text Solution

    |

  7. If y=((alphax+beta)/(gammax+delta)), then 2(dy)/(dx).(d^(3)y)/(dx^(3))...

    Text Solution

    |

  8. If f(1)=3, f'(1) = 2, f''(1)=4, then (f^-)''(3)= (where f^-1=invers...

    Text Solution

    |

  9. If the third derivative of (x^(4))/((x-1)(x-2)) is (-12k)/((x-2)^(4))+...

    Text Solution

    |

  10. If (a+bx)e^(y/x)=x , Prove that x^3(d^2y)/(dx^2)=(x(dy)/(dx)-y)^2

    Text Solution

    |

  11. If R=([1+((dy)/(dx))^2]^(-3//2))/((d^2y)/(dx2)) , thenR^(2//3) can be ...

    Text Solution

    |

  12. If x=2cost-cos2t ,\ \ y=2sint-sin2t , find (d^2y)/(dx^2) at t=pi/2 .

    Text Solution

    |

  13. If y^3-y=2x ,t h e n(x^2-1/(27))(d^2y)/(dx^2)+x(dy)/dx= y b. y/3 c. y...

    Text Solution

    |

  14. Let f(x)=(g(x))/x w h e nx!=0 and f(0)=0. If g(0)=g^(prime)(0)=0a n d...

    Text Solution

    |

  15. Let f:(-oo,oo)vec[0,oo) be a continuous function such that f(x+y)=f(x)...

    Text Solution

    |

  16. Let f:R to R be a function satisfying f(x+y)=f(x)=lambdaxy+3x^(2)y^(2)...

    Text Solution

    |

  17. A functionf: Rvec[1,oo) satisfies the equation f(x y)=f(x)f(y)-f(x)-f(...

    Text Solution

    |

  18. Let (f(x+y)-f(x))/2=(f(y)-a)/2+x y for all real xa n dydot If f(x) is ...

    Text Solution

    |

  19. Letf(3)=4 and f'(3)=5. Then lim(xrarr3) [f(x)] (where [.] denotes the ...

    Text Solution

    |

  20. Let f(x) be a function which is differentiable any number of times and...

    Text Solution

    |