Home
Class 12
MATHS
A curve parametrically given by x=t+t^(3...

A curve parametrically given by `x=t+t^(3)" and "y=t^(2)," where "t in R." For what vlaue(s) of t is "(dy)/(dx)=(1)/(2)`?

A

`(1)/(3)`

B

2

C

3

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of \( t \) for which \( \frac{dy}{dx} = \frac{1}{2} \) given the parametric equations \( x = t + t^3 \) and \( y = t^2 \). ### Step-by-Step Solution: 1. **Identify the Parametric Equations**: \[ x = t + t^3 \] \[ y = t^2 \] 2. **Differentiate \( x \) and \( y \) with respect to \( t \)**: - Differentiate \( x \) with respect to \( t \): \[ \frac{dx}{dt} = \frac{d}{dt}(t + t^3) = 1 + 3t^2 \] - Differentiate \( y \) with respect to \( t \): \[ \frac{dy}{dt} = \frac{d}{dt}(t^2) = 2t \] 3. **Find \( \frac{dy}{dx} \)**: Using the chain rule, we have: \[ \frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{2t}{1 + 3t^2} \] 4. **Set \( \frac{dy}{dx} \) equal to \( \frac{1}{2} \)**: \[ \frac{2t}{1 + 3t^2} = \frac{1}{2} \] 5. **Cross-multiply to eliminate the fraction**: \[ 2(2t) = 1 + 3t^2 \] This simplifies to: \[ 4t = 1 + 3t^2 \] 6. **Rearrange the equation**: \[ 3t^2 - 4t + 1 = 0 \] 7. **Solve the quadratic equation using the quadratic formula**: The quadratic formula is given by: \[ t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \( a = 3 \), \( b = -4 \), and \( c = 1 \): \[ t = \frac{-(-4) \pm \sqrt{(-4)^2 - 4 \cdot 3 \cdot 1}}{2 \cdot 3} \] \[ t = \frac{4 \pm \sqrt{16 - 12}}{6} \] \[ t = \frac{4 \pm \sqrt{4}}{6} \] \[ t = \frac{4 \pm 2}{6} \] 8. **Calculate the two possible values for \( t \)**: - First value: \[ t = \frac{4 + 2}{6} = \frac{6}{6} = 1 \] - Second value: \[ t = \frac{4 - 2}{6} = \frac{2}{6} = \frac{1}{3} \] 9. **Final Values**: The values of \( t \) for which \( \frac{dy}{dx} = \frac{1}{2} \) are: \[ t = 1 \quad \text{and} \quad t = \frac{1}{3} \]

To solve the problem, we need to find the values of \( t \) for which \( \frac{dy}{dx} = \frac{1}{2} \) given the parametric equations \( x = t + t^3 \) and \( y = t^2 \). ### Step-by-Step Solution: 1. **Identify the Parametric Equations**: \[ x = t + t^3 \] ...
Promotional Banner

Topper's Solved these Questions

  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise Single correct Answer|34 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|14 Videos

Similar Questions

Explore conceptually related problems

A curve in the xy-plane is parametrically given by x=t+t^3a n dy=t^2,w h e r et in R is the parameter. For what value(s) of t is (dy)/(dx)=1/2? 1/3 b. 2 c. 3 d. 1

A curve is represented paramtrically by the equations x=e^(t)cost and y=e^(t)sint where t is a parameter. Then The value of (d^(2)y)/(dx^(2)) at the point where t=0 is

If a curve is represented parametrically by the equation x=f(t) and y=g(t)" then prove that "(d^(2)y)/(dx^(2))=-[(g'(t))/(f'(t))]^(3)((d^(2)x)/(dy^(2)))

If a curve is represented parametrically by the equation x=f(t) and y=g(t)" then prove that "(d^(2)y)/(dx^(2))=-[(g'(t))/(f'(t))]^(3)((d^(2)x)/(dy^(2)))

The equation of the normal to the curve parametrically represented by x=t^(2)+3t-8 and y=2t^(2)-2t-5 at the point P(2,-1) is

If y = f(x) defined parametrically by x = 2t - |t - 1| and y = 2t^(2) + t|t| , then

A function is reprersented parametrically by the equations x=(1+t)/(t^3); y=3/(2t^2)+2/tdotT h e nt h ev a l u eof|(dy)/(dx)-x((dy)/(dx))^3| is__________

A function is reprersented parametrically by the equations x=(1+t)/(t^3); y=3/(2t^2)+2/tdotT h e nt h ev a l u eof(dy)/(dx)-x((dy)/(dx))^3 is__________

A function is reprersented parametrically by the equations x=(1+t)/(t^3); y=3/(2t^2)+2/tdotT h e nt h ev a l u eof|(dy)/(dx)-x((dy)/(dx))^3| is__________

Consider the curve represented parametrically by the equation x = t^3-4t^2-3t and y = 2t^2 + 3t-5 where t in R .If H denotes the number of point on the curve where the tangent is horizontal and V the number of point where the tangent is vertical then

CENGAGE ENGLISH-METHODS OF DIFFERENTIATION-Single Correct Answer Type
  1. A curve parametrically given by x=t+t^(3)" and "y=t^(2)," where "t in ...

    Text Solution

    |

  2. The right hand derivative of f(x)=[x]t a npix a tx=7 is (where [.] den...

    Text Solution

    |

  3. If f(x-y)=f(x).g(y)-f(y).g(x) and g(x-y)=g(x).g(y)+f(x).f(y) for all x...

    Text Solution

    |

  4. If xe^(xy)-y=sin^(2)x then (dy)/(dx) at x = 0 is

    Text Solution

    |

  5. about to only mathematics

    Text Solution

    |

  6. If for a continuous function f,f(0)=f(1)=0,f^(prime)(1)=2a n dy(x)=f(e...

    Text Solution

    |

  7. The derivative of cos(2tan^(-1)sqrt((1-x)/(1+x)))-2cos^(-1)sqrt((1-x)/...

    Text Solution

    |

  8. If y=(x^(2))/(2)+(1)/(2)xsqrt(x^(2)+1)+lnsqrt(x+sqrt(x^(2)+1)) then th...

    Text Solution

    |

  9. Let g(x)=f(x)sinx ,w h e r ef(x) is a twice differentiable function on...

    Text Solution

    |

  10. If f(x)=log(e)(log(e)x)/log(e)x then f'(x) at x = e is

    Text Solution

    |

  11. Let g(x)=e^(f(x))a n df(x+1)=x+f(x)AAx in Rdot If n in I^+,t h e n(g...

    Text Solution

    |

  12. d/(dx)[cos^(-1)(xsqrt(x)-sqrt((1-x)(1-x^2)))]= 1/(sqrt(1-x^2))-1/(2s...

    Text Solution

    |

  13. If t(1+x^2)=x and x^2+t^2=y, then at x=2 the value of (d y)/(d x) is e...

    Text Solution

    |

  14. if x=(1+t)/t^3 ,y=3/(2t^2)+2/t satisfies f(x)*{(dy)/(dx)}^3=1+(dy)/(d...

    Text Solution

    |

  15. Let y=x^3-8x+7a n dx=f(t)dot If (dy)/(dt)=2 and x=3 at t=0, then (dx)/...

    Text Solution

    |

  16. If x=sectheta-costheta and y=sec^n theta- cos^n theta then show that (...

    Text Solution

    |

  17. The derivative of the function represented parametrically as x=2t=|...

    Text Solution

    |

  18. If y = tan^(-1)(u/sqrt(1-u^2)) and x = sec^(-1)(1/(2u^2-1)), u in (0...

    Text Solution

    |

  19. The differential coefficient of sin^(-1)((5cos x-4s in x)/(sqrt(41))) ...

    Text Solution

    |

  20. x y=(x+y)6na n d(dy)/(dx)=y/x t h e nn= 1 b.2 c. 3 d. 4

    Text Solution

    |

  21. If x+y=3e^2t h e d/(dx)(x^y)=0forx= e^2 b. e^e c. e d. 2e^2

    Text Solution

    |