Home
Class 12
MATHS
The function f: RvecR satisfies f(x^2)do...

The function `f: RvecR` satisfies `f(x^2)dotf^(x)=f^(prime)(x)dotf^(prime)(x^2)` for all real `xdot` Given that `f(1)=1` and `f^(1)=8` , then the value of `f^(prime)(1)+f^(1)` is `2` b. `4` c. `6` d. 8

A

2

B

4

C

6

D

8

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will analyze the given functional equation and the conditions provided. ### Given: The function \( f: \mathbb{R} \to \mathbb{R} \) satisfies the equation: \[ f(x^2) \cdot f'(x) = f'(x) \cdot f'(x^2) \] for all real \( x \). We also have: - \( f(1) = 1 \) - \( f'(1) = 8 \) We need to find the value of \( f'(1) + f(1) \). ### Step 1: Analyze the functional equation From the functional equation: \[ f(x^2) \cdot f'(x) = f'(x) \cdot f'(x^2) \] We can simplify this by dividing both sides by \( f'(x) \) (assuming \( f'(x) \neq 0 \)): \[ f(x^2) = f'(x^2) \] ### Step 2: Substitute \( x = 1 \) Now, let's substitute \( x = 1 \) into the simplified equation: \[ f(1^2) = f'(1^2) \] This gives us: \[ f(1) = f'(1) \] ### Step 3: Use the given values From the problem, we know: - \( f(1) = 1 \) - \( f'(1) = 8 \) Substituting these values into the equation: \[ 1 = 8 \] This is a contradiction, indicating that we cannot divide by \( f'(x) \) at \( x = 1 \). Therefore, we need to analyze the case when \( f'(x) = 0 \). ### Step 4: Revisit the functional equation Since \( f'(1) \neq 0 \), we can conclude that the functional equation holds for other values of \( x \). Let's explore what happens when we set \( x = 0 \): \[ f(0^2) \cdot f'(0) = f'(0) \cdot f'(0^2) \] This simplifies to: \[ f(0) \cdot f'(0) = f'(0) \cdot f'(0) \] If \( f'(0) \neq 0 \), we can divide both sides by \( f'(0) \): \[ f(0) = f'(0) \] ### Step 5: Calculate \( f'(1) + f(1) \) Now, we need to find \( f'(1) + f(1) \): \[ f'(1) + f(1) = 8 + 1 = 9 \] However, this does not match the options provided. Let's check the calculations again. ### Final Calculation Given \( f(1) = 1 \) and \( f'(1) = 8 \): \[ f'(1) + f(1) = 8 + 1 = 9 \] ### Conclusion It seems there is a misunderstanding in the problem statement or the options provided. Based on the calculations, the value of \( f'(1) + f(1) \) is \( 9 \).

To solve the problem, we will analyze the given functional equation and the conditions provided. ### Given: The function \( f: \mathbb{R} \to \mathbb{R} \) satisfies the equation: \[ f(x^2) \cdot f'(x) = f'(x) \cdot f'(x^2) \] for all real \( x \). ...
Promotional Banner

Topper's Solved these Questions

  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise Single correct Answer|34 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|14 Videos

Similar Questions

Explore conceptually related problems

The function f:R→R satisfies f(x^2 ).f ′′ (x)=f ′ (x).f ′ (x^2 ) for all real x. Given that f(1)=1 and compute the value of f ′ (1)+f ′′ (1) .

If function f satisfies the relation f(x)*f^(prime)(-x)=f(-x)*f^(prime)(x) for all x ,and f(0)=3, and if f(3)=3, then the value of f(-3) is ______________

If function f satisfies the relation f(x)*f^(prime)(-x)=f(-x)*f^(prime)(x)for a l lx ,a n df(0)=3,a n dif f(3)=3, then the value of f(-3) is ______________

f^(prime)(x)=varphi^(prime)(x)=f(x) for all xdot Also, f(3)=5a n df^(prime)(3)=4. Then the value of [f(10)]^2 − [ϕ(10)]^2is _____

f^(prime)(x)=varphi^(prime)(x)=f(x) for all xdot Also, f(3)=5a n df^(prime)(3)=4. Then the value of [f(10)]^2 - [ varphi(10)]^2 is _____

f^(prime)(x)=phi(x) and phi^(prime)(x)=f(x) for all x. Also, f(3)=5 and f^(prime)(3)=4 . Then the value of [f(10)]^2-[phi(10)]^2 is _____

Let f(x) be differentiable for real x such that f^(prime)(x)>0on(-oo,-4), f^(prime)(x) 0on(6,oo), If g(x)=f(10-2x), then the value of g^(prime)(2) is a. 1 b. 2 c. 0 d. 4

If f(x) attains a local minimum at x=c , then write the values of f^(prime)(c) and f^(prime)prime(c) .

If f(x)=log{(u(x))/(v(x))},\ u(1)=v(1) and u^(prime)(1)=v^(prime)(1)=2 , then find the value of f^(prime)(1) .

A nonzero polynomial with real coefficient has the property that f(x)=f^(prime)(x)dotf^(prime)(x)dot If a is the leading coefficient of f(x), then the value of 1//2a) is____

CENGAGE ENGLISH-METHODS OF DIFFERENTIATION-Single Correct Answer Type
  1. If x+y=3e^2t h e d/(dx)(x^y)=0forx= e^2 b. e^e c. e d. 2e^2

    Text Solution

    |

  2. If f(x)=(x-1)^(100)(x-2)^(2(99))(x-3)^(3(98))…(x-100)^(100), then the ...

    Text Solution

    |

  3. The function f: RvecR satisfies f(x^2)dotf^(x)=f^(prime)(x)dotf^(prime...

    Text Solution

    |

  4. The second derivative of a single valued function parametrically repre...

    Text Solution

    |

  5. For the curve sinx+siny=1 lying in first quadrant. If lim(xrarr0) x^(...

    Text Solution

    |

  6. If y=((alphax+beta)/(gammax+delta)), then 2(dy)/(dx).(d^(3)y)/(dx^(3))...

    Text Solution

    |

  7. If f(1)=3, f'(1) = 2, f''(1)=4, then (f^-)''(3)= (where f^-1=invers...

    Text Solution

    |

  8. If the third derivative of (x^(4))/((x-1)(x-2)) is (-12k)/((x-2)^(4))+...

    Text Solution

    |

  9. If (a+bx)e^(y/x)=x , Prove that x^3(d^2y)/(dx^2)=(x(dy)/(dx)-y)^2

    Text Solution

    |

  10. If R=([1+((dy)/(dx))^2]^(-3//2))/((d^2y)/(dx2)) , thenR^(2//3) can be ...

    Text Solution

    |

  11. If x=2cost-cos2t ,\ \ y=2sint-sin2t , find (d^2y)/(dx^2) at t=pi/2 .

    Text Solution

    |

  12. If y^3-y=2x ,t h e n(x^2-1/(27))(d^2y)/(dx^2)+x(dy)/dx= y b. y/3 c. y...

    Text Solution

    |

  13. Let f(x)=(g(x))/x w h e nx!=0 and f(0)=0. If g(0)=g^(prime)(0)=0a n d...

    Text Solution

    |

  14. Let f:(-oo,oo)vec[0,oo) be a continuous function such that f(x+y)=f(x)...

    Text Solution

    |

  15. Let f:R to R be a function satisfying f(x+y)=f(x)=lambdaxy+3x^(2)y^(2)...

    Text Solution

    |

  16. A functionf: Rvec[1,oo) satisfies the equation f(x y)=f(x)f(y)-f(x)-f(...

    Text Solution

    |

  17. Let (f(x+y)-f(x))/2=(f(y)-a)/2+x y for all real xa n dydot If f(x) is ...

    Text Solution

    |

  18. Letf(3)=4 and f'(3)=5. Then lim(xrarr3) [f(x)] (where [.] denotes the ...

    Text Solution

    |

  19. Let f(x) be a function which is differentiable any number of times and...

    Text Solution

    |

  20. If f(x)=|[(x-a)^4, (x-a)^3, 1] , [(x-b)^4, (x-b)^3,1] , [(x-c)^4, (x-c...

    Text Solution

    |