Home
Class 12
MATHS
For the curve sinx+siny=1 lying in first...

For the curve `sinx+siny=1` lying in first quadrant. If `lim_(xrarr0) x^(alpha)(d^(2)y)/(dx^(2))` exists and non-zero than `2alpha=`

A

3

B

4

C

5

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given equation of the curve and find the second derivative of \( y \) with respect to \( x \). The steps are outlined below: ### Step 1: Start with the given equation The equation of the curve is: \[ \sin x + \sin y = 1 \] ### Step 2: Differentiate the equation with respect to \( x \) Differentiating both sides with respect to \( x \): \[ \cos x + \cos y \frac{dy}{dx} = 0 \] From this, we can solve for \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = -\frac{\cos x}{\cos y} \] ### Step 3: Differentiate again to find \( \frac{d^2y}{dx^2} \) Now we differentiate \( \frac{dy}{dx} \) again: \[ \frac{d^2y}{dx^2} = \frac{d}{dx}\left(-\frac{\cos x}{\cos y}\right) \] Using the quotient rule: \[ \frac{d^2y}{dx^2} = -\frac{\sin x \cos y + \cos x \sin y \frac{dy}{dx}}{\cos^2 y} \] Substituting \( \frac{dy}{dx} = -\frac{\cos x}{\cos y} \): \[ \frac{d^2y}{dx^2} = -\frac{\sin x \cos y - \cos x \sin y \frac{\cos x}{\cos y}}{\cos^2 y} \] Simplifying: \[ \frac{d^2y}{dx^2} = -\frac{\sin x \cos y - \frac{\cos^2 x \sin y}{\cos y}}{\cos^2 y} \] \[ = -\frac{\sin x \cos y - \cos^2 x (1 - \sin x)}{\cos^2 y} \] \[ = -\frac{\sin x \cos y - \cos^2 x + \cos^2 x \sin x}{\cos^2 y} \] \[ = -\frac{\sin x \cos y + \cos^2 x \sin x - \cos^2 x}{\cos^2 y} \] ### Step 4: Analyze the limit We need to find: \[ \lim_{x \to 0} x^{\alpha} \frac{d^2y}{dx^2} \] To ensure this limit exists and is non-zero, we need to analyze the behavior of \( \frac{d^2y}{dx^2} \) as \( x \to 0 \). ### Step 5: Use Taylor series expansion Using the Taylor expansion around \( x = 0 \): \[ \sin x \approx x \quad \text{and} \quad \cos x \approx 1 \] Thus: \[ \sin y \approx 1 - x \quad \text{and} \quad \cos y \approx 1 \] Substituting these approximations into \( \frac{d^2y}{dx^2} \): \[ \frac{d^2y}{dx^2} \approx -\frac{x(1) + 1 \cdot (1 - x)(-1)}{1} = -\frac{x + 1 - x}{1} = -1 \] ### Step 6: Find the limit Now substituting back into the limit: \[ \lim_{x \to 0} x^{\alpha} \cdot (-1) = -x^{\alpha} \] For this limit to exist and be non-zero, we require: \[ \alpha = 0 \] ### Step 7: Calculate \( 2\alpha \) Thus: \[ 2\alpha = 2 \cdot 0 = 0 \] ### Final Answer The value of \( 2\alpha \) is: \[ \boxed{0} \]

To solve the problem, we need to analyze the given equation of the curve and find the second derivative of \( y \) with respect to \( x \). The steps are outlined below: ### Step 1: Start with the given equation The equation of the curve is: \[ \sin x + \sin y = 1 \] ...
Promotional Banner

Topper's Solved these Questions

  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise Single correct Answer|34 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|14 Videos

Similar Questions

Explore conceptually related problems

lim_( xrarr0) (1-cosx)/(x^(2))

lim_(xrarr0) (x^(2)-3x+2)

lim_(xrarr0) (x^(2)-x)/(sinx)

lim_(xrarr0) (sin^(2)4x)/(x^(2))= ?

lim_(xrarr0) (6^(x)-3^(x)-2^(x)+1)/(x^(2))=?

lim_(xrarr0) (e^(x^(2))-cosx)/(x^2) is equal to

lim_(xrarr0)((1-cos x)/x^2)

lim_(xrarr0) (sin(picos^2x))/(x^2) equals

lim_(xrarr0) (tan 4x)/(tan 2x)

lim_(xrarr0) (sin 3 x)/(2x)

CENGAGE ENGLISH-METHODS OF DIFFERENTIATION-Single Correct Answer Type
  1. The function f: RvecR satisfies f(x^2)dotf^(x)=f^(prime)(x)dotf^(prime...

    Text Solution

    |

  2. The second derivative of a single valued function parametrically repre...

    Text Solution

    |

  3. For the curve sinx+siny=1 lying in first quadrant. If lim(xrarr0) x^(...

    Text Solution

    |

  4. If y=((alphax+beta)/(gammax+delta)), then 2(dy)/(dx).(d^(3)y)/(dx^(3))...

    Text Solution

    |

  5. If f(1)=3, f'(1) = 2, f''(1)=4, then (f^-)''(3)= (where f^-1=invers...

    Text Solution

    |

  6. If the third derivative of (x^(4))/((x-1)(x-2)) is (-12k)/((x-2)^(4))+...

    Text Solution

    |

  7. If (a+bx)e^(y/x)=x , Prove that x^3(d^2y)/(dx^2)=(x(dy)/(dx)-y)^2

    Text Solution

    |

  8. If R=([1+((dy)/(dx))^2]^(-3//2))/((d^2y)/(dx2)) , thenR^(2//3) can be ...

    Text Solution

    |

  9. If x=2cost-cos2t ,\ \ y=2sint-sin2t , find (d^2y)/(dx^2) at t=pi/2 .

    Text Solution

    |

  10. If y^3-y=2x ,t h e n(x^2-1/(27))(d^2y)/(dx^2)+x(dy)/dx= y b. y/3 c. y...

    Text Solution

    |

  11. Let f(x)=(g(x))/x w h e nx!=0 and f(0)=0. If g(0)=g^(prime)(0)=0a n d...

    Text Solution

    |

  12. Let f:(-oo,oo)vec[0,oo) be a continuous function such that f(x+y)=f(x)...

    Text Solution

    |

  13. Let f:R to R be a function satisfying f(x+y)=f(x)=lambdaxy+3x^(2)y^(2)...

    Text Solution

    |

  14. A functionf: Rvec[1,oo) satisfies the equation f(x y)=f(x)f(y)-f(x)-f(...

    Text Solution

    |

  15. Let (f(x+y)-f(x))/2=(f(y)-a)/2+x y for all real xa n dydot If f(x) is ...

    Text Solution

    |

  16. Letf(3)=4 and f'(3)=5. Then lim(xrarr3) [f(x)] (where [.] denotes the ...

    Text Solution

    |

  17. Let f(x) be a function which is differentiable any number of times and...

    Text Solution

    |

  18. If f(x)=|[(x-a)^4, (x-a)^3, 1] , [(x-b)^4, (x-b)^3,1] , [(x-c)^4, (x-c...

    Text Solution

    |

  19. Suppose |(f'(x),f(x)),(f''(x),f'(x))|=0 where f(x) is continuously dif...

    Text Solution

    |

  20. A nonzero polynomial with real coefficient has the property that f(x)=...

    Text Solution

    |