Home
Class 12
MATHS
If y=((alphax+beta)/(gammax+delta)), the...

If `y=((alphax+beta)/(gammax+delta)),` then `2(dy)/(dx).(d^(3)y)/(dx^(3))` is

A

`7((d^(2)y)/(dx^(2)))^(2)`

B

`5((d^(2)y)/(dx^(2)))^(2)`

C

`3((d^(2)y)/(dx^(2)))^(2)`

D

`((d^(2)y)/(dx^(2)))^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the expression for \( 2 \frac{dy}{dx} \cdot \frac{d^3y}{dx^3} \) given that \( y = \frac{\alpha x + \beta}{\gamma x + \delta} \). ### Step-by-Step Solution: 1. **Identify \( u \) and \( v \)**: Let \( u = \alpha x + \beta \) and \( v = \gamma x + \delta \). 2. **First Derivative \( \frac{dy}{dx} \)**: Using the quotient rule: \[ \frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \] where \( \frac{du}{dx} = \alpha \) and \( \frac{dv}{dx} = \gamma \). Thus, \[ \frac{dy}{dx} = \frac{(\gamma x + \delta)(\alpha) - (\alpha x + \beta)(\gamma)}{(\gamma x + \delta)^2} \] Simplifying this gives: \[ \frac{dy}{dx} = \frac{\alpha \gamma x + \alpha \delta - \alpha \gamma x - \beta \gamma}{(\gamma x + \delta)^2} = \frac{\alpha \delta - \beta \gamma}{(\gamma x + \delta)^2} \] 3. **Second Derivative \( \frac{d^2y}{dx^2} \)**: We differentiate \( \frac{dy}{dx} \) again using the quotient rule: \[ \frac{d^2y}{dx^2} = \frac{(\gamma x + \delta)^2 \cdot 0 - (\alpha \delta - \beta \gamma) \cdot 2(\gamma x + \delta)(\gamma)}{(\gamma x + \delta)^4} \] Simplifying this gives: \[ \frac{d^2y}{dx^2} = -\frac{2\gamma(\alpha \delta - \beta \gamma)}{(\gamma x + \delta)^3} \] 4. **Third Derivative \( \frac{d^3y}{dx^3} \)**: Differentiate \( \frac{d^2y}{dx^2} \): \[ \frac{d^3y}{dx^3} = -\frac{d}{dx} \left( \frac{2\gamma(\alpha \delta - \beta \gamma)}{(\gamma x + \delta)^3} \right) \] Using the quotient rule again: \[ \frac{d^3y}{dx^3} = -\frac{0 - 2\gamma(\alpha \delta - \beta \gamma)(-3\gamma)}{(\gamma x + \delta)^4} \] Simplifying gives: \[ \frac{d^3y}{dx^3} = \frac{6\gamma^2(\alpha \delta - \beta \gamma)}{(\gamma x + \delta)^4} \] 5. **Calculate \( 2 \frac{dy}{dx} \cdot \frac{d^3y}{dx^3} \)**: Now we can calculate: \[ 2 \frac{dy}{dx} \cdot \frac{d^3y}{dx^3} = 2 \left( \frac{\alpha \delta - \beta \gamma}{(\gamma x + \delta)^2} \right) \left( \frac{6\gamma^2(\alpha \delta - \beta \gamma)}{(\gamma x + \delta)^4} \right) \] This simplifies to: \[ = \frac{12\gamma^2(\alpha \delta - \beta \gamma)^2}{(\gamma x + \delta)^6} \] ### Final Result: Thus, the expression for \( 2 \frac{dy}{dx} \cdot \frac{d^3y}{dx^3} \) is: \[ \frac{12\gamma^2(\alpha \delta - \beta \gamma)^2}{(\gamma x + \delta)^6} \]

To solve the problem, we need to find the expression for \( 2 \frac{dy}{dx} \cdot \frac{d^3y}{dx^3} \) given that \( y = \frac{\alpha x + \beta}{\gamma x + \delta} \). ### Step-by-Step Solution: 1. **Identify \( u \) and \( v \)**: Let \( u = \alpha x + \beta \) and \( v = \gamma x + \delta \). 2. **First Derivative \( \frac{dy}{dx} \)**: ...
Promotional Banner

Topper's Solved these Questions

  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise Single correct Answer|34 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|14 Videos

Similar Questions

Explore conceptually related problems

y^2+x^2(dy)/(dx)=x y(dy)/(dx)

Solve (dy)/(dx)+2*y/x=(y^3)/(x^3)

(dy)/(dx)=(x+y+1)/(2x+2y+3)

Solve (d^2y)/(dx^2)=((dy)/(dx))^2

Solve (d^2y)/(dx^2)=((dy)/(dx))^2

If y=x^(4) , find (d^(2)y)/(dx^(2))and(d^(3)y)/(dx^(3)) .

The solution of y^2=2y(dy)/(dx)-((dy)/(dx))^(2), is

Solve ((dy)/(dx))+(y/x)=y^3

Solve ((dy)/(dx))+(y/x)=y^3

If x=sin theta and y=cos^(3) then 2y(d^(2)y)/(dx^(2))+4((dy)/(dx))^(2) is

CENGAGE ENGLISH-METHODS OF DIFFERENTIATION-Single Correct Answer Type
  1. The second derivative of a single valued function parametrically repre...

    Text Solution

    |

  2. For the curve sinx+siny=1 lying in first quadrant. If lim(xrarr0) x^(...

    Text Solution

    |

  3. If y=((alphax+beta)/(gammax+delta)), then 2(dy)/(dx).(d^(3)y)/(dx^(3))...

    Text Solution

    |

  4. If f(1)=3, f'(1) = 2, f''(1)=4, then (f^-)''(3)= (where f^-1=invers...

    Text Solution

    |

  5. If the third derivative of (x^(4))/((x-1)(x-2)) is (-12k)/((x-2)^(4))+...

    Text Solution

    |

  6. If (a+bx)e^(y/x)=x , Prove that x^3(d^2y)/(dx^2)=(x(dy)/(dx)-y)^2

    Text Solution

    |

  7. If R=([1+((dy)/(dx))^2]^(-3//2))/((d^2y)/(dx2)) , thenR^(2//3) can be ...

    Text Solution

    |

  8. If x=2cost-cos2t ,\ \ y=2sint-sin2t , find (d^2y)/(dx^2) at t=pi/2 .

    Text Solution

    |

  9. If y^3-y=2x ,t h e n(x^2-1/(27))(d^2y)/(dx^2)+x(dy)/dx= y b. y/3 c. y...

    Text Solution

    |

  10. Let f(x)=(g(x))/x w h e nx!=0 and f(0)=0. If g(0)=g^(prime)(0)=0a n d...

    Text Solution

    |

  11. Let f:(-oo,oo)vec[0,oo) be a continuous function such that f(x+y)=f(x)...

    Text Solution

    |

  12. Let f:R to R be a function satisfying f(x+y)=f(x)=lambdaxy+3x^(2)y^(2)...

    Text Solution

    |

  13. A functionf: Rvec[1,oo) satisfies the equation f(x y)=f(x)f(y)-f(x)-f(...

    Text Solution

    |

  14. Let (f(x+y)-f(x))/2=(f(y)-a)/2+x y for all real xa n dydot If f(x) is ...

    Text Solution

    |

  15. Letf(3)=4 and f'(3)=5. Then lim(xrarr3) [f(x)] (where [.] denotes the ...

    Text Solution

    |

  16. Let f(x) be a function which is differentiable any number of times and...

    Text Solution

    |

  17. If f(x)=|[(x-a)^4, (x-a)^3, 1] , [(x-b)^4, (x-b)^3,1] , [(x-c)^4, (x-c...

    Text Solution

    |

  18. Suppose |(f'(x),f(x)),(f''(x),f'(x))|=0 where f(x) is continuously dif...

    Text Solution

    |

  19. A nonzero polynomial with real coefficient has the property that f(x)=...

    Text Solution

    |

  20. If 'f' is an increasing function from RvecR such that f^(x)>0a n df^(-...

    Text Solution

    |