Home
Class 12
MATHS
If f(1)=3, f'(1) = 2, f''(1)=4, then (...

If `f(1)=3, f'(1) = 2, f''(1)=4`, then `(f^-)''(3)=` (where `f^-1=`inverse of `y = f(x))`

A

1

B

`-(1)/(2)`

C

`-2`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the second derivative of the inverse function \( (f^{-1})''(3) \) given the values of \( f(1) = 3 \), \( f'(1) = 2 \), and \( f''(1) = 4 \). ### Step-by-Step Solution: 1. **Identify the relationship between the derivatives of \( f \) and \( f^{-1} \)**: The derivatives of the inverse function can be expressed using the following formulas: - The first derivative of the inverse function is given by: \[ (f^{-1})'(y) = \frac{1}{f'(x)} \quad \text{where } y = f(x) \] - The second derivative of the inverse function is given by: \[ (f^{-1})''(y) = -\frac{f''(x)}{(f'(x))^3} \] 2. **Determine \( x \) such that \( f(x) = 3 \)**: From the given information, we know that \( f(1) = 3 \). Therefore, \( x = 1 \) when \( y = 3 \). 3. **Substitute the known values into the formulas**: - We have \( f'(1) = 2 \) and \( f''(1) = 4 \). - Now, we can substitute these values into the formula for the second derivative of the inverse function: \[ (f^{-1})''(3) = -\frac{f''(1)}{(f'(1))^3} \] - Substituting the values: \[ (f^{-1})''(3) = -\frac{4}{(2)^3} \] 4. **Calculate the result**: - Calculate \( (2)^3 = 8 \). - Therefore: \[ (f^{-1})''(3) = -\frac{4}{8} = -\frac{1}{2} \] ### Final Answer: \[ (f^{-1})''(3) = -\frac{1}{2} \]

To solve the problem, we need to find the second derivative of the inverse function \( (f^{-1})''(3) \) given the values of \( f(1) = 3 \), \( f'(1) = 2 \), and \( f''(1) = 4 \). ### Step-by-Step Solution: 1. **Identify the relationship between the derivatives of \( f \) and \( f^{-1} \)**: The derivatives of the inverse function can be expressed using the following formulas: - The first derivative of the inverse function is given by: \[ ...
Promotional Banner

Topper's Solved these Questions

  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise Single correct Answer|34 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|14 Videos

Similar Questions

Explore conceptually related problems

If f'(x) = 1/x + x^2 and f(1)=4/3 then find the value of f(x)

If f(x)=1-4x , and f^(-1)(x) is the inverse of f(x), then f(-3)f^(-1)(-3)=

If f(1) = 1, f'(1) = 3, then the derivative of f(f(x))) + (f(x))^(2) at x = 1 is

If f(1) = 3, f' (1) = -1/3 , then the derivative of {x^11 + f (x)}^-2 at x = 1, is

If f(x) = (x + 1)/(x-1) , then the value of f{f(3)} is :

Let f : W-> W be a given function satisfying f(x) = f(x-1)+f(x-2) for x<=2 .If f(0)=0 and f(1)=1 , ther find the value of f(2) + f(3) + f(4) + f(5) + f(6) .

Let polynomial function f(x)=x^4+ax^3+bx^2+cx+d such that f(1)=1,f(2)=2,f(3)=3 then [(f(-1)+f(5))/(f(0)+f(4))] equals(where [.] denotes greatest integer function)

If f(x)=(x-1)/(x+1) , then f(f(a x)) in terms of f(x) is equal to (a)(f(x)-1)/(a(f(x)-1)) (b) (f(x)+1)/(a(f(x)-1)) (f(x)-1)/(a(f(x)+1)) (d) (f(x)+1)/(a(f(x)+1))

If Delta = |(f(x),f(1/x)+f(x)), (1,f(1/x))|=0 where it is given f(x) = a + bx^n and f(2) = 17 and f(5) = K then K-620=

If f^2(x)*f((1-x)/(1+x))=x^3, [x!=-1,1 and f(x)!=0], then find |[f(-2)]| (where [] is the greatest integer function).

CENGAGE ENGLISH-METHODS OF DIFFERENTIATION-Single Correct Answer Type
  1. For the curve sinx+siny=1 lying in first quadrant. If lim(xrarr0) x^(...

    Text Solution

    |

  2. If y=((alphax+beta)/(gammax+delta)), then 2(dy)/(dx).(d^(3)y)/(dx^(3))...

    Text Solution

    |

  3. If f(1)=3, f'(1) = 2, f''(1)=4, then (f^-)''(3)= (where f^-1=invers...

    Text Solution

    |

  4. If the third derivative of (x^(4))/((x-1)(x-2)) is (-12k)/((x-2)^(4))+...

    Text Solution

    |

  5. If (a+bx)e^(y/x)=x , Prove that x^3(d^2y)/(dx^2)=(x(dy)/(dx)-y)^2

    Text Solution

    |

  6. If R=([1+((dy)/(dx))^2]^(-3//2))/((d^2y)/(dx2)) , thenR^(2//3) can be ...

    Text Solution

    |

  7. If x=2cost-cos2t ,\ \ y=2sint-sin2t , find (d^2y)/(dx^2) at t=pi/2 .

    Text Solution

    |

  8. If y^3-y=2x ,t h e n(x^2-1/(27))(d^2y)/(dx^2)+x(dy)/dx= y b. y/3 c. y...

    Text Solution

    |

  9. Let f(x)=(g(x))/x w h e nx!=0 and f(0)=0. If g(0)=g^(prime)(0)=0a n d...

    Text Solution

    |

  10. Let f:(-oo,oo)vec[0,oo) be a continuous function such that f(x+y)=f(x)...

    Text Solution

    |

  11. Let f:R to R be a function satisfying f(x+y)=f(x)=lambdaxy+3x^(2)y^(2)...

    Text Solution

    |

  12. A functionf: Rvec[1,oo) satisfies the equation f(x y)=f(x)f(y)-f(x)-f(...

    Text Solution

    |

  13. Let (f(x+y)-f(x))/2=(f(y)-a)/2+x y for all real xa n dydot If f(x) is ...

    Text Solution

    |

  14. Letf(3)=4 and f'(3)=5. Then lim(xrarr3) [f(x)] (where [.] denotes the ...

    Text Solution

    |

  15. Let f(x) be a function which is differentiable any number of times and...

    Text Solution

    |

  16. If f(x)=|[(x-a)^4, (x-a)^3, 1] , [(x-b)^4, (x-b)^3,1] , [(x-c)^4, (x-c...

    Text Solution

    |

  17. Suppose |(f'(x),f(x)),(f''(x),f'(x))|=0 where f(x) is continuously dif...

    Text Solution

    |

  18. A nonzero polynomial with real coefficient has the property that f(x)=...

    Text Solution

    |

  19. If 'f' is an increasing function from RvecR such that f^(x)>0a n df^(-...

    Text Solution

    |

  20. Vertices of a variable acute angled triangle ABC lies on a fixed circl...

    Text Solution

    |