Home
Class 12
MATHS
If R=([1+((dy)/(dx))^2]^(-3//2))/((d^2y)...

If `R=([1+((dy)/(dx))^2]^(-3//2))/((d^2y)/(dx2))` , then`R^(2//3)` can be put in the form of `1/(((d^2y)/(dx^2))^(2//3))+1/(((d^2x)/(dy^2))^(2//3))` b. `1/(((d^2y)/(dx^2))^(2//3))-1/(((d^2x)/(dy^2))^(2//3))` c. `2/(((d^2y)/(dx^2))^(2//3))+2/(((d^2x)/(dy^2))^(2//3))` d. `1/(((d^2y)/(dx^2))^(2//3))dot1/(((d^2x)/(dy^2))^(2//3))`

A

`(1)/(((d^(2)y)/(dx^(2)))^(2//3))+(1)/(((d^(2)y)/(dy^(2)))^(2//3))`

B

`(1)/(((d^(2)y)/(dx^(2)))^(2//3))+(1)/(((d^(2)y)/(dy^(2)))^(2//3))`

C

`(2)/(((d^(2)y)/(dx^(2)))^(2//3))+(2)/(((d^(2)y)/(dy^(2)))^(2//3))`

D

`(1)/(((d^(2)y)/(dx^(2)))^(2//3)).(1)/(((d^(2)y)/(dy^(2)))^(2//3))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we start with the expression for \( R \): \[ R = \frac{[1 + \left(\frac{dy}{dx}\right)^2]^{-\frac{3}{2}}}{\frac{d^2y}{dx^2}} \] We need to find \( R^{\frac{2}{3}} \) and express it in a specific form. ### Step 1: Calculate \( R^{\frac{2}{3}} \) First, we raise \( R \) to the power of \( \frac{2}{3} \): \[ R^{\frac{2}{3}} = \left(\frac{[1 + \left(\frac{dy}{dx}\right)^2]^{-\frac{3}{2}}}{\frac{d^2y}{dx^2}}\right)^{\frac{2}{3}} \] This can be simplified as: \[ R^{\frac{2}{3}} = \frac{[1 + \left(\frac{dy}{dx}\right)^2]^{-1}}{\left(\frac{d^2y}{dx^2}\right)^{\frac{2}{3}}} \] ### Step 2: Simplify the expression Next, we simplify the expression further: \[ R^{\frac{2}{3}} = \frac{1}{[1 + \left(\frac{dy}{dx}\right)^2] \cdot \left(\frac{d^2y}{dx^2}\right)^{\frac{2}{3}}} \] ### Step 3: Find \( \frac{d^2x}{dy^2} \) To relate this to \( \frac{d^2x}{dy^2} \), we need to find the second derivative \( \frac{d^2x}{dy^2} \). We know: \[ \frac{dx}{dy} = \frac{1}{\frac{dy}{dx}} \] Differentiating this with respect to \( y \): \[ \frac{d^2x}{dy^2} = -\frac{1}{\left(\frac{dy}{dx}\right)^2} \cdot \frac{d^2y}{dx^2} \] ### Step 4: Substitute \( \frac{d^2x}{dy^2} \) into the expression Now, substituting this into our expression for \( R^{\frac{2}{3}} \): \[ R^{\frac{2}{3}} = \frac{1}{\left(\frac{d^2y}{dx^2}\right)^{\frac{2}{3}} + \left(-\frac{1}{\left(\frac{dy}{dx}\right)^2} \cdot \frac{d^2y}{dx^2}\right)^{\frac{2}{3}}} \] ### Step 5: Final expression This leads us to: \[ R^{\frac{2}{3}} = \frac{1}{\left(\frac{d^2y}{dx^2}\right)^{\frac{2}{3}} + \left(\frac{d^2x}{dy^2}\right)^{\frac{2}{3}}} \] ### Conclusion Thus, we can conclude that: \[ R^{\frac{2}{3}} = \frac{1}{\left(\frac{d^2y}{dx^2}\right)^{\frac{2}{3}} + \left(\frac{d^2x}{dy^2}\right)^{\frac{2}{3}}} \] This matches option (a) from the question.

To solve the given problem, we start with the expression for \( R \): \[ R = \frac{[1 + \left(\frac{dy}{dx}\right)^2]^{-\frac{3}{2}}}{\frac{d^2y}{dx^2}} \] We need to find \( R^{\frac{2}{3}} \) and express it in a specific form. ...
Promotional Banner

Topper's Solved these Questions

  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise Single correct Answer|34 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|14 Videos

Similar Questions

Explore conceptually related problems

If R=([1+((dy)/(dx))^2]^(3//2))/((d^2y)/(dx2)) , then R^(2//3) can be put in the form of a. 1/(((d^2y)/(dx^2))^(2//3))+1/(((d^2x)/(dy^2))^(2//3)) b. 1/(((d^2y)/(dx^2))^(2//3))-1/(((d^2x)/(dy^2))^(2//3)) c. 2/(((d^2y)/(dx^2))^(2//3))+2/(((d^2x)/(dy^2))^(2//3)) d. 1/(((d^2y)/(dx^2))^(2//3))1/(((d^2x)/(dy^2))^(2//3))

(d^2x)/(dy^2) equals: (1) ((d^2y)/(dx^2))^(-1) (2) -((d^2y)/(dx^2))^(-1)((dy)/(dx))^(-3) (3) ((d^2y)/(dx^2))^(-1)((dy)/(dx))^(-2) (4) -((d^2y)/(dx^2))^(-1)((dy)/(dx))^(-3)

(d^2x)/(dy^2) equals: (1) ((d^2y)/(dx^2))^-1 (2) -((d^2y)/(dx^2))^-1 ((dy)/(dx))^-3 (3) -((d^2y)/(dx^2))^-1 ((dy)/(dx))^-2 (4) -((d^2y)/(dx^2))^-1 ((dy)/(dx))^3

(d^2x)/(dy^2) equals: (1.) ((d^2y)/(dx^2))^-1 (2) -((d^2y)/(dx^2)) ((dy)/(dx))^-3 (3) -((d^2y)/(dx^2))^-1 ((dy)/(dx))^-2 (4) -((d^2y)/(dx^2))^-1 ((dy)/(dx))^3

If x=logp and y=1/p ,then (a) (d^2y)/(dx^2)-2p=0 (b) (d^2y)/(dx^2)+y=0 (c) (d^2y)/(dx^2)+(dy)/(dx)=0 (d) (d^2y)/(dx^2)-(dy)/(dx)=0

Find the order and degree of (d^2y)/dx^2+3(dy)/(dx)=ysin((d^2y)/dx^2)

If (d^(2)x)/(dy^(2)) ((dy)/(dx))^(3) + (d^(2) y)/(dx^(2)) = k , then k is equal to

if (x-a)^2+(y-b)^2=c^2 then ({1+((dy)/(dx))^2})^(3/2)/{(d^2y)/(dx^2)} =?

The order of the differential equation ((d^(2)y)/(dx^(2)))^(3)=(1+(dy)/(dx))^(1//2)

if y=ae^(x)+be^(-3x)+c , then the value of ((d^(3)y)/(dx^(3))+2(d^(2)y)/(dx^(2)))/((dy)/(dx)) is

CENGAGE ENGLISH-METHODS OF DIFFERENTIATION-Single Correct Answer Type
  1. If the third derivative of (x^(4))/((x-1)(x-2)) is (-12k)/((x-2)^(4))+...

    Text Solution

    |

  2. If (a+bx)e^(y/x)=x , Prove that x^3(d^2y)/(dx^2)=(x(dy)/(dx)-y)^2

    Text Solution

    |

  3. If R=([1+((dy)/(dx))^2]^(-3//2))/((d^2y)/(dx2)) , thenR^(2//3) can be ...

    Text Solution

    |

  4. If x=2cost-cos2t ,\ \ y=2sint-sin2t , find (d^2y)/(dx^2) at t=pi/2 .

    Text Solution

    |

  5. If y^3-y=2x ,t h e n(x^2-1/(27))(d^2y)/(dx^2)+x(dy)/dx= y b. y/3 c. y...

    Text Solution

    |

  6. Let f(x)=(g(x))/x w h e nx!=0 and f(0)=0. If g(0)=g^(prime)(0)=0a n d...

    Text Solution

    |

  7. Let f:(-oo,oo)vec[0,oo) be a continuous function such that f(x+y)=f(x)...

    Text Solution

    |

  8. Let f:R to R be a function satisfying f(x+y)=f(x)=lambdaxy+3x^(2)y^(2)...

    Text Solution

    |

  9. A functionf: Rvec[1,oo) satisfies the equation f(x y)=f(x)f(y)-f(x)-f(...

    Text Solution

    |

  10. Let (f(x+y)-f(x))/2=(f(y)-a)/2+x y for all real xa n dydot If f(x) is ...

    Text Solution

    |

  11. Letf(3)=4 and f'(3)=5. Then lim(xrarr3) [f(x)] (where [.] denotes the ...

    Text Solution

    |

  12. Let f(x) be a function which is differentiable any number of times and...

    Text Solution

    |

  13. If f(x)=|[(x-a)^4, (x-a)^3, 1] , [(x-b)^4, (x-b)^3,1] , [(x-c)^4, (x-c...

    Text Solution

    |

  14. Suppose |(f'(x),f(x)),(f''(x),f'(x))|=0 where f(x) is continuously dif...

    Text Solution

    |

  15. A nonzero polynomial with real coefficient has the property that f(x)=...

    Text Solution

    |

  16. If 'f' is an increasing function from RvecR such that f^(x)>0a n df^(-...

    Text Solution

    |

  17. Vertices of a variable acute angled triangle ABC lies on a fixed circl...

    Text Solution

    |

  18. In a question a student was given to find the derivative of the pro...

    Text Solution

    |

  19. f is a strictly monotonic differentiable function with f^(prime)(x)=1/...

    Text Solution

    |

  20. Suppose f: RvecR^+ be a differentiable function such that 3f(x+y)=f(x)...

    Text Solution

    |