Home
Class 12
MATHS
Let f(x)=(g(x))/x w h e nx!=0 and f(0)=0...

Let `f(x)=(g(x))/x w h e nx!=0` and `f(0)=0.` If `g(0)=g^(prime)(0)=0a n dg^(0)=17` then `f'(0)=` `3//4` b. `-1//2` c. `17//3` d. `17//2`

A

`3//4`

B

`-1//2`

C

`17//3`

D

`17//2`

Text Solution

AI Generated Solution

The correct Answer is:
To find \( f'(0) \) for the function \( f(x) = \frac{g(x)}{x} \) when \( x \neq 0 \) and \( f(0) = 0 \), we will use the given information and apply L'Hôpital's Rule due to the \( \frac{0}{0} \) form. ### Step 1: Write down the limit definition of the derivative at \( x = 0 \) We start with the definition of the derivative: \[ f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} \] Since \( f(0) = 0 \), this simplifies to: \[ f'(0) = \lim_{x \to 0} \frac{f(x)}{x} \] ### Step 2: Substitute \( f(x) \) Substituting \( f(x) = \frac{g(x)}{x} \): \[ f'(0) = \lim_{x \to 0} \frac{\frac{g(x)}{x}}{x} = \lim_{x \to 0} \frac{g(x)}{x^2} \] ### Step 3: Analyze the limit As \( x \to 0 \), both \( g(0) = 0 \) and \( x^2 \to 0 \), resulting in a \( \frac{0}{0} \) form. We can apply L'Hôpital's Rule. ### Step 4: Apply L'Hôpital's Rule Using L'Hôpital's Rule, we differentiate the numerator and denominator: \[ f'(0) = \lim_{x \to 0} \frac{g'(x)}{2x} \] Again, as \( x \to 0 \), we have \( g'(0) = 0 \) and \( 2x \to 0 \), resulting in another \( \frac{0}{0} \) form. We apply L'Hôpital's Rule again. ### Step 5: Apply L'Hôpital's Rule again Differentiating again gives: \[ f'(0) = \lim_{x \to 0} \frac{g''(x)}{2} \] Now, substituting \( g''(0) = 17 \): \[ f'(0) = \frac{17}{2} \] ### Conclusion Thus, the value of \( f'(0) \) is: \[ \boxed{\frac{17}{2}} \]

To find \( f'(0) \) for the function \( f(x) = \frac{g(x)}{x} \) when \( x \neq 0 \) and \( f(0) = 0 \), we will use the given information and apply L'Hôpital's Rule due to the \( \frac{0}{0} \) form. ### Step 1: Write down the limit definition of the derivative at \( x = 0 \) We start with the definition of the derivative: \[ f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} \] ...
Promotional Banner

Topper's Solved these Questions

  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise Single correct Answer|34 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|14 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=(g(x))/x when x!=0 and f(0)=0. If g(0)=g^(prime)(0)=0 and g^ " (0)=17 then f^(prime)(0)= a). 3/4 b). -1/2 c). 17/3 d). 17/2

If f(x)=e^(x)g(x),g(0)=2,g'(0)=1, then f'(0) is

Let f(x)={x+1,x >0 \n 2-x ,xlt=0 and g(x)={x+3,x 0)g(f(x)).

Let f(x)={x+1,x >0, 2-x ,xlt=0 and g(x)={x+3,x 0)g(f(x)).

Let g(x)=2f(x/2)+f(1-x) and f^(primeprime)(x)<0 in 0<=x<=1 then g(x)

If f(x)=sgn(x)={(|x|)/x,x!=0, 0, x=0 and g(x)=f(f(x)), then at x=0,g(x) is

If f(x)=|0x-a x-b x+a0x-c x+b x+c0|,t h e n f(x)=0 (b) f(b)=0 (c) f(0)=0 f(1)=0

If f(x)=(sin3x)/x,w h e nx!=0, f(x)= 1,w h e n x=0 Find whether f(x) is continuous at x=0

Given that f(x) = xg (x)//|x| g(0) = g'(0)=0 and f(x) is continuous at x=0 then the value of f'(0)

If f(x)=(1+x)^2, then the value of f(x0)+f^(prime)(0) +(f^(0))/(2!)+(f^(0))/(3!)+(f^n(0))/(n !)dot

CENGAGE ENGLISH-METHODS OF DIFFERENTIATION-Single Correct Answer Type
  1. If the third derivative of (x^(4))/((x-1)(x-2)) is (-12k)/((x-2)^(4))+...

    Text Solution

    |

  2. If (a+bx)e^(y/x)=x , Prove that x^3(d^2y)/(dx^2)=(x(dy)/(dx)-y)^2

    Text Solution

    |

  3. If R=([1+((dy)/(dx))^2]^(-3//2))/((d^2y)/(dx2)) , thenR^(2//3) can be ...

    Text Solution

    |

  4. If x=2cost-cos2t ,\ \ y=2sint-sin2t , find (d^2y)/(dx^2) at t=pi/2 .

    Text Solution

    |

  5. If y^3-y=2x ,t h e n(x^2-1/(27))(d^2y)/(dx^2)+x(dy)/dx= y b. y/3 c. y...

    Text Solution

    |

  6. Let f(x)=(g(x))/x w h e nx!=0 and f(0)=0. If g(0)=g^(prime)(0)=0a n d...

    Text Solution

    |

  7. Let f:(-oo,oo)vec[0,oo) be a continuous function such that f(x+y)=f(x)...

    Text Solution

    |

  8. Let f:R to R be a function satisfying f(x+y)=f(x)=lambdaxy+3x^(2)y^(2)...

    Text Solution

    |

  9. A functionf: Rvec[1,oo) satisfies the equation f(x y)=f(x)f(y)-f(x)-f(...

    Text Solution

    |

  10. Let (f(x+y)-f(x))/2=(f(y)-a)/2+x y for all real xa n dydot If f(x) is ...

    Text Solution

    |

  11. Letf(3)=4 and f'(3)=5. Then lim(xrarr3) [f(x)] (where [.] denotes the ...

    Text Solution

    |

  12. Let f(x) be a function which is differentiable any number of times and...

    Text Solution

    |

  13. If f(x)=|[(x-a)^4, (x-a)^3, 1] , [(x-b)^4, (x-b)^3,1] , [(x-c)^4, (x-c...

    Text Solution

    |

  14. Suppose |(f'(x),f(x)),(f''(x),f'(x))|=0 where f(x) is continuously dif...

    Text Solution

    |

  15. A nonzero polynomial with real coefficient has the property that f(x)=...

    Text Solution

    |

  16. If 'f' is an increasing function from RvecR such that f^(x)>0a n df^(-...

    Text Solution

    |

  17. Vertices of a variable acute angled triangle ABC lies on a fixed circl...

    Text Solution

    |

  18. In a question a student was given to find the derivative of the pro...

    Text Solution

    |

  19. f is a strictly monotonic differentiable function with f^(prime)(x)=1/...

    Text Solution

    |

  20. Suppose f: RvecR^+ be a differentiable function such that 3f(x+y)=f(x)...

    Text Solution

    |