Home
Class 12
MATHS
A functionf: Rvec[1,oo) satisfies the eq...

A function`f: Rvec[1,oo)` satisfies the equation `f(x y)=f(x)f(y)-f(x)-f(y)+2.` If differentiable on `R-{0}a n df(2)=5,f^(prime)(x)=(f(x)-1)/xdotlambdat h e nlambda=` `2^(prime)f(1)` b. `3f^(prime)(1)` c. `1/2f^(prime)(1)` d. `f^(prime)(1)`

A

`2f'(1)`

B

`3f'(1)`

C

`(1)/(2)f'(1)`

D

`f'(1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem step by step, we will analyze the functional equation and the conditions provided. ### Step 1: Analyze the functional equation The functional equation given is: \[ f(xy) = f(x)f(y) - f(x) - f(y) + 2 \] ### Step 2: Substitute specific values To find specific values of \( f \), we can substitute \( x = 1 \) and \( y = 1 \): \[ f(1 \cdot 1) = f(1)f(1) - f(1) - f(1) + 2 \] This simplifies to: \[ f(1) = f(1)^2 - 2f(1) + 2 \] Rearranging gives: \[ f(1)^2 - 3f(1) + 2 = 0 \] Factoring this quadratic equation: \[ (f(1) - 1)(f(1) - 2) = 0 \] Thus, \( f(1) = 1 \) or \( f(1) = 2 \). ### Step 3: Use the condition \( f(2) = 5 \) Next, we substitute \( x = 1 \) and \( y = 2 \): \[ f(1 \cdot 2) = f(1)f(2) - f(1) - f(2) + 2 \] This gives: \[ f(2) = f(1) \cdot 5 - f(1) - 5 + 2 \] Using \( f(2) = 5 \), we have: \[ 5 = 5f(1) - f(1) - 5 + 2 \] Simplifying: \[ 5 = 4f(1) - 3 \] Thus: \[ 4f(1) = 8 \] \[ f(1) = 2 \] ### Step 4: Determine the function \( f(x) \) Now we know \( f(1) = 2 \). We can use this information to find \( f(x) \). ### Step 5: Differentiate \( f(x) \) We are given that: \[ f'(x) = \frac{f(x) - 1}{x} \] To find \( f'(1) \): \[ f'(1) = \frac{f(1) - 1}{1} = \frac{2 - 1}{1} = 1 \] ### Step 6: Find \( \lambda \) We need to find \( \lambda \) where: \[ \lambda = 2f'(1) \] Substituting \( f'(1) = 1 \): \[ \lambda = 2 \cdot 1 = 2 \] ### Step 7: Conclusion The value of \( \lambda \) is \( 2 \). ### Final Answer The answer is \( \lambda = 2 \).

To solve the given problem step by step, we will analyze the functional equation and the conditions provided. ### Step 1: Analyze the functional equation The functional equation given is: \[ f(xy) = f(x)f(y) - f(x) - f(y) + 2 \] ### Step 2: Substitute specific values To find specific values of \( f \), we can substitute \( x = 1 \) and \( y = 1 \): ...
Promotional Banner

Topper's Solved these Questions

  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise Single correct Answer|34 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|14 Videos

Similar Questions

Explore conceptually related problems

A function f: RvecR satisfies the equation f(x+y)=f(x)f(y) for all x , y in Ra n df(x)!=0fora l lx in Rdot If f(x) is differentiable at x=0a n df^(prime)(0)=2, then prove that f^(prime)(x)=2f(x)dot

A function f: R->R satisfies the equation f(x+y)=f(x)f(y) for all x , y in R and f(x)!=0 for all x in Rdot If f(x) is differentiable at x=0a n df^(prime)(0)=2, then prove that f^(prime)(x)=2f(x)dot

A function f: R->R satisfies that equation f(x+y)=f(x)f(y) for all x ,\ y in R , f(x)!=0 . Suppose that the function f(x) is differentiable at x=0 and f^(prime)(0)=2 . Prove that f^(prime)(x)=2\ f(x) .

A function f: R->R satisfies that equation f(x+y)=f(x)f(y) for all x ,\ y in R , f(x)!=0 . Suppose that the function f(x) is differentiable at x=0 and f^(prime)(0)=2 . Prove that f^(prime)(x)=2\ f(x) .

Show that f(x)=x^2 is differentiable at x=1 and find f^(prime)(1) .

Let f(x y)=f(x)f(y)AAx , y in Ra n df is differentiable at x=1 such that f^(prime)(1)=1. Also, f(1)!=0,f(2)=3. Then find f^(prime)(2)dot

Let f(x y)=f(x)f(y)AAx , y in Ra n df is differentiable at x=1 such that f^(prime)(1)=1. Also, f(1)!=0,f(2)=3. Then find f^(prime)(2)dot

Let f(x y)=f(x)f(y)AAx , y in Ra n df is differentiable at x=1 such that f^(prime)(1)=1. Also, f(1)!=0,f(2)=3. Then find f^(prime)(2)dot

Suppose the function f(x) satisfies the relation f(x+y^3)=f(x)+f(y^3)dotAAx ,y in R and is differentiable for all xdot Statement 1: If f^(prime)(2)=a ,t h e nf^(prime)(-2)=a Statement 2: f(x) is an odd function.

If f(x)=|logx|,xgt0 ,find f^(prime)(1/e)a n df^(prime)(e)

CENGAGE ENGLISH-METHODS OF DIFFERENTIATION-Single Correct Answer Type
  1. If the third derivative of (x^(4))/((x-1)(x-2)) is (-12k)/((x-2)^(4))+...

    Text Solution

    |

  2. If (a+bx)e^(y/x)=x , Prove that x^3(d^2y)/(dx^2)=(x(dy)/(dx)-y)^2

    Text Solution

    |

  3. If R=([1+((dy)/(dx))^2]^(-3//2))/((d^2y)/(dx2)) , thenR^(2//3) can be ...

    Text Solution

    |

  4. If x=2cost-cos2t ,\ \ y=2sint-sin2t , find (d^2y)/(dx^2) at t=pi/2 .

    Text Solution

    |

  5. If y^3-y=2x ,t h e n(x^2-1/(27))(d^2y)/(dx^2)+x(dy)/dx= y b. y/3 c. y...

    Text Solution

    |

  6. Let f(x)=(g(x))/x w h e nx!=0 and f(0)=0. If g(0)=g^(prime)(0)=0a n d...

    Text Solution

    |

  7. Let f:(-oo,oo)vec[0,oo) be a continuous function such that f(x+y)=f(x)...

    Text Solution

    |

  8. Let f:R to R be a function satisfying f(x+y)=f(x)=lambdaxy+3x^(2)y^(2)...

    Text Solution

    |

  9. A functionf: Rvec[1,oo) satisfies the equation f(x y)=f(x)f(y)-f(x)-f(...

    Text Solution

    |

  10. Let (f(x+y)-f(x))/2=(f(y)-a)/2+x y for all real xa n dydot If f(x) is ...

    Text Solution

    |

  11. Letf(3)=4 and f'(3)=5. Then lim(xrarr3) [f(x)] (where [.] denotes the ...

    Text Solution

    |

  12. Let f(x) be a function which is differentiable any number of times and...

    Text Solution

    |

  13. If f(x)=|[(x-a)^4, (x-a)^3, 1] , [(x-b)^4, (x-b)^3,1] , [(x-c)^4, (x-c...

    Text Solution

    |

  14. Suppose |(f'(x),f(x)),(f''(x),f'(x))|=0 where f(x) is continuously dif...

    Text Solution

    |

  15. A nonzero polynomial with real coefficient has the property that f(x)=...

    Text Solution

    |

  16. If 'f' is an increasing function from RvecR such that f^(x)>0a n df^(-...

    Text Solution

    |

  17. Vertices of a variable acute angled triangle ABC lies on a fixed circl...

    Text Solution

    |

  18. In a question a student was given to find the derivative of the pro...

    Text Solution

    |

  19. f is a strictly monotonic differentiable function with f^(prime)(x)=1/...

    Text Solution

    |

  20. Suppose f: RvecR^+ be a differentiable function such that 3f(x+y)=f(x)...

    Text Solution

    |