Home
Class 12
MATHS
Find the range of f(x) =(sinx)/(x)+(x)/(...

Find the range of f(x) =`(sinx)/(x)+(x)/(tanx) in (0,(pi)/(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the range of the function \( f(x) = \frac{\sin x}{x} + \frac{x}{\tan x} \) for \( x \) in the interval \( (0, \frac{\pi}{2}) \), we will follow these steps: ### Step 1: Analyze the function We start by rewriting the function: \[ f(x) = \frac{\sin x}{x} + \frac{x}{\tan x} \] We know that \( \tan x = \frac{\sin x}{\cos x} \), so we can express \( \frac{x}{\tan x} \) as: \[ \frac{x}{\tan x} = \frac{x \cos x}{\sin x} \] Thus, the function can be rewritten as: \[ f(x) = \frac{\sin x}{x} + \frac{x \cos x}{\sin x} \] ### Step 2: Differentiate the function To find the monotonicity of the function, we differentiate \( f(x) \): \[ f'(x) = \frac{d}{dx} \left( \frac{\sin x}{x} \right) + \frac{d}{dx} \left( \frac{x \cos x}{\sin x} \right) \] Using the quotient rule, we find: \[ f'(x) = \frac{x \cos x - \sin x}{x^2} + \frac{\sin x \cdot \cos x - x \sin x \cdot \sin x}{\sin^2 x} \] ### Step 3: Analyze the sign of the derivative We need to analyze the sign of \( f'(x) \) in the interval \( (0, \frac{\pi}{2}) \): - The term \( \frac{x \cos x - \sin x}{x^2} \) is negative since \( \cos x \) decreases and \( \sin x \) increases in this interval. - The term \( \frac{\sin x \cdot \cos x - x \sin^2 x}{\sin^2 x} \) is also negative because \( \sin x \cdot \cos x \) increases slower than \( x \cdot \sin^2 x \). Since both parts of \( f'(x) \) are negative, we conclude that \( f'(x) < 0 \) for \( x \in (0, \frac{\pi}{2}) \). Therefore, \( f(x) \) is a decreasing function in this interval. ### Step 4: Evaluate the limits at the endpoints Now, we evaluate the limits of \( f(x) \) as \( x \) approaches the boundaries of the interval: 1. As \( x \to 0 \): \[ \lim_{x \to 0} f(x) = \lim_{x \to 0} \left( \frac{\sin x}{x} + \frac{x}{\tan x} \right) = 1 + 1 = 2 \] 2. As \( x \to \frac{\pi}{2} \): \[ \lim_{x \to \frac{\pi}{2}} f(x) = \frac{\sin(\frac{\pi}{2})}{\frac{\pi}{2}} + \frac{\frac{\pi}{2}}{\tan(\frac{\pi}{2})} = \frac{2}{\pi} + 0 = \frac{2}{\pi} \] ### Step 5: Determine the range Since \( f(x) \) is decreasing from \( 2 \) to \( \frac{2}{\pi} \) as \( x \) moves from \( 0 \) to \( \frac{\pi}{2} \), the range of \( f(x) \) is: \[ \left( \frac{2}{\pi}, 2 \right) \] ### Final Answer The range of \( f(x) = \frac{\sin x}{x} + \frac{x}{\tan x} \) in the interval \( (0, \frac{\pi}{2}) \) is: \[ \left( \frac{2}{\pi}, 2 \right) \]

To find the range of the function \( f(x) = \frac{\sin x}{x} + \frac{x}{\tan x} \) for \( x \) in the interval \( (0, \frac{\pi}{2}) \), we will follow these steps: ### Step 1: Analyze the function We start by rewriting the function: \[ f(x) = \frac{\sin x}{x} + \frac{x}{\tan x} \] We know that \( \tan x = \frac{\sin x}{\cos x} \), so we can express \( \frac{x}{\tan x} \) as: ...
Promotional Banner

Topper's Solved these Questions

  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercise 6.3|5 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercise 6.4|17 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercise 6.1|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos
  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Comprehension Type|6 Videos

Similar Questions

Explore conceptually related problems

Find the range of f(x) =8/(sinx+3)

Find the range of f(x)=sin^2x-3sinx+2

Find the range of f(x)=sin^2x-sinx+1.

Find the range of f(x)=sin^2x-sinx+1.

Find the range of f(x) =sin^2x-3sinx+2 .

Find the range of f(x)=|sinx|+|cosx|, x in R .

Find the range of f(x) = (sin^(-1) x)^(2) + 2pi cos^(-1) x + pi^(2)

Find the range of f(x)=|sinx|+|cosx|,x in Rdot

Find the range of f(x)=(2sin^2x+2sinx+3)/(sin^2x+sinx+1)

Find the range of f(x)=(2sin^2x+2sinx+3)/(sin^2x+sinx+1)