Home
Class 12
MATHS
Prove that a(1^(m))+a(2^(m))+…+a(n^(m))/...

Prove that `a_(1^(m))+a_(2^(m))+…+a_(n^(m))/(n)gt((a_(1)+a_(2)+…+a_(n))/(n))`,if m`lt`0 orm`gt`1 and `a_(i)gt0 forall`

Text Solution

Verified by Experts

Let y =`f(x)=x^(m),where x gt 0 and 0 lt mlt1`
`(d^(2)y)/(dx^(2))=m(m-1)x^(m-2lt0`
So graph is concave downward
Therefore `(a_(1)^(m)+a_(2)^(m)+…a_(n)^(m))/(n)lt(a_(1)+a_(2)+…a_(n))/(n)^(n)`
Promotional Banner

Topper's Solved these Questions

  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercise 6.4|17 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercise 6.5|5 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercise 6.2|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos
  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Comprehension Type|6 Videos

Similar Questions

Explore conceptually related problems

Prove that a_(1)^(m)+a_(2)^(m)+….+a_(n)^(m)()/(n)lt(a_(1)+a_(2)+..+a_(n))/(n)^(m) If 0ltmlt1 and a_(i)gt0 for all I.

Statement-1: 1^(3)+3^(3)+5^(3)+7^(3)+...+(2n-1)^(3)ltn^(4),n in N Statement-2: If a_(1),a_(2),a_(3),…,a_(n) are n distinct positive real numbers and mgt1 , then (a_(1)^(m)+a_(2)^(m)+...+a_(n)^(m))/(n)gt((a_(1)+a_(2)+...+a_(b))/(n))^(m)

If a_(1),a_(2),a_(3),a_(4),,……, a_(n-1),a_(n) " are distinct non-zero real numbers such that " (a_(1)^(2) + a_(2)^(2) + a_(3)^(2) + …..+ a_(n-1)^(2))x^2 + 2 (a_(1)a_(2) + a_(2)a_(3) + a_(3)a_(4) + ……+ a_(n-1) a_(n))x + (a_(2)^(2) +a_(3)^(2) + a_(4)^(2) +......+ a_(n)^(2)) le 0 " then " a_(1), a_(2), a_(3) ,....., a_(n-1), a_(n) are in

Find a_(1) and a_(9) if a_(n) is given by a_(n) = (n^(2))/(n+1)

If a_(1),a_(2),a_(3), . . .,a_(n) are non-zero real numbers such that (a_(1)^(2)+a_(2)^(2)+ . .. +a_(n-1).^(2))(a_(2)^(2)+a_(3)^(2)+ . . .+a_(n)^(2))le(a_(1)a_(2)+a_(2)a_(3)+ . . . +a_(n-1)a_(n))^(2)" then", a_(1),a_(2), . . . .a_(n) are in

If a_(1), a_(2), a_(3),...., a_(n) is an A.P. with common difference d, then prove that tan[tan^(-1) ((d)/(1 + a_(1) a_(2))) + tan^(-1) ((d)/(1 + a_(2) a_(3))) + ...+ tan^(-1) ((d)/(1 + a_( - 1)a_(n)))] = ((n -1)d)/(1 + a_(1) a_(n))

If a_(1)=5 and a_(n)=1+sqrt(a_(n-1)), find a_(3) .

Let y = 1 + (a_(1))/(x - a_(1)) + (a_(2) x)/((x - a_(1))(x - a_(2))) + (a_(3) x^(2))/((x - a_(1))(x - a_(2))(x - a_(3))) + … (a_(n) x^(n - 1))/((x - a_(1))(x - a_(2))(x - a_(3))..(x - a_(n))) Find (dy)/(dx)

If a_(0), a_(1),a_(2),… are the coefficients in the expansion of (1 + x + x^(2))^(n) in ascending powers of x, prove that if E_(1) = a_(0) + a_(3) + a_(6) + …, E_(2) = a_(1) + a_(4) + a_(7) + … and E_(3) = a_(2) + a_(5) + a_(8) + ..." then " E_(1) = E_(2) = E_(3) = 3^(n-1)

If a_(1), a_(2),….,a_(n) are n(gt1) real numbers, then