Home
Class 12
MATHS
f(x)=|x loge x| monotonically decreases ...

`f(x)=|x log_e x|` monotonically decreases in `(0,1/e)` (b) `(1/e ,1)` `(1,oo)` (d) `(1/e ,oo)`

A

`(0,1//e)`

B

`(1//e,1)`

C

`(1.oo)`

D

`(1//e,oo)`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the intervals where the function \( f(x) = |x \log_e x| \) is monotonically decreasing, we need to analyze the derivative of the function. Here’s a step-by-step solution: ### Step 1: Define the function The function is given as: \[ f(x) = |x \log_e x| \] ### Step 2: Determine the intervals for \( f(x) \) Since the logarithm function is defined only for \( x > 0 \), we will consider the intervals \( (0, 1) \) and \( (1, \infty) \). ### Step 3: Analyze the function in different intervals 1. **For \( x \in (0, 1) \)**: - Here, \( \log_e x < 0 \), thus \( x \log_e x < 0 \). - Therefore, \( f(x) = -x \log_e x \). 2. **For \( x \in (1, \infty) \)**: - Here, \( \log_e x > 0 \), thus \( x \log_e x > 0 \). - Therefore, \( f(x) = x \log_e x \). ### Step 4: Differentiate \( f(x) \) Now we differentiate \( f(x) \) in both intervals. 1. **For \( x \in (0, 1) \)**: \[ f(x) = -x \log_e x \] Using the product rule: \[ f'(x) = -\left( \log_e x + 1 \right) \] 2. **For \( x \in (1, \infty) \)**: \[ f(x) = x \log_e x \] Again using the product rule: \[ f'(x) = \log_e x + 1 \] ### Step 5: Determine where \( f'(x) < 0 \) 1. **For \( x \in (0, 1) \)**: \[ f'(x) = -(\log_e x + 1) < 0 \implies \log_e x + 1 > 0 \implies \log_e x > -1 \implies x > \frac{1}{e} \] Thus, \( f(x) \) is decreasing in the interval \( \left( \frac{1}{e}, 1 \right) \). 2. **For \( x \in (1, \infty) \)**: \[ f'(x) = \log_e x + 1 > 0 \text{ for } x > 1 \] Thus, \( f(x) \) is increasing in the interval \( (1, \infty) \). ### Conclusion The function \( f(x) \) is monotonically decreasing in the interval \( \left( \frac{1}{e}, 1 \right) \). ### Final Answer The correct option is: (b) \( \left( \frac{1}{e}, 1 \right) \) ---

To determine the intervals where the function \( f(x) = |x \log_e x| \) is monotonically decreasing, we need to analyze the derivative of the function. Here’s a step-by-step solution: ### Step 1: Define the function The function is given as: \[ f(x) = |x \log_e x| \] ...
Promotional Banner

Topper's Solved these Questions

  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|48 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Numerical Value Type|24 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercise 6.7|5 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos
  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Comprehension Type|6 Videos

Similar Questions

Explore conceptually related problems

The function f(x)=x^x decreases on the interval (a) (0,\ e) (b) (0,\ 1) (c) (0,\ 1//e) (d) (1//e ,\ e)

Let f:(0,oo)vecR be given by f(x)=int_(1/x)^x(e^(-(t+1/t))dt)/t , then (a) f(x) is monotonically increasing on [1,oo) (b) f(x) is monotonically decreasing on (0,1) (c) f(2^x) is an odd function of x on R (d) none of these.

The function x^x decreases in the interval (a) (0,e) (b) (0,1) (c) (0,1/e) (d) none of these

f(x)=ln(lnx) (x>1) is increasing in a) (0,1) b) (1, oo) c) (0,2) d) (-oo, 1)

If e^x+e^(f(x))=e , then the range of f(x) is (-oo,1] (b) (-oo,1) (1, oo) (d) [1,oo)

The function f(x)=cot^(-1)x+x increases in the interval (a) (1,\ oo) (b) (-1,\ oo) (c) (-oo,\ oo) (d) (0,\ oo)

The domain of the following function is f(x)=(log)_2(-(log)_(1/2)(1+1/((x^(1/4)))-1) (0,1) (b) (0,1) (1,oo) (d) (1,oo)

The interval of increase of the function f(x)=x-e^x+tan(2pi//7) is (a) (0,\ oo) (b) (-oo,\ 0) (c) (1,\ oo) (d) (-oo,\ 1)

If f(x)={x^3,if x^2 =1 then f(x) is differentiable at (a) (-oo,oo)-{1} (b) (-oo,oo)-{1,-1} (c) (-oo,oo)-{1,-1,0} (d) (-oo,oo)-{-1}

Let set of all possible values of lamda such that f (x)= e ^(2x) - (lamda+1) e ^(x) +2x is monotonically increasing for AA x in R is (-oo, k]. Find the value of k.

CENGAGE ENGLISH-MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS-Exercise
  1. Let f(x) be a function such that f^(prime)(x)=(log)(1/3)[(log)3(sinx+a...

    Text Solution

    |

  2. If f(x)=x^3+4x^2+lambdax+1 is a monotonically decreasing function of x...

    Text Solution

    |

  3. f(x)=|x loge x| monotonically decreases in (0,1/e) (b) (1/e ,1) (1,o...

    Text Solution

    |

  4. The set of value(s) of a for which the function f(x)=(a x^3)/3+(a+2)x^...

    Text Solution

    |

  5. The maximum value of the function f(x)=((1+x)^(0. 6))/(1+x^(0. 6)) in ...

    Text Solution

    |

  6. Suppose that f is a polynomial of degree 3 and that f^(x)!=0 at any of...

    Text Solution

    |

  7. A function g(x) is defined as g(x)=1/4f(2x^2-1)+1/2f(1-x^2) and f(x) i...

    Text Solution

    |

  8. If varphi(x) is a polynomial function and varphi^(prime)(x)>varphi(x)A...

    Text Solution

    |

  9. If f''(x) gt forall in R, f(3)=0 and g(x) =f(tan^(2)x-2tanx+4y)0ltxlt(...

    Text Solution

    |

  10. If f(x)=x+sinx ,g(x)=e^(-x),u=sqrt(c+1)-sqrt(c) v=sqrt(c) -sqrt(c-1),(...

    Text Solution

    |

  11. The number of solutions of the equation x^3+2x^2+6x+2cosx=0 where x in...

    Text Solution

    |

  12. Let f(x)=cospix+10x+3x^2+x^3,-2lt=xlt=3. The absolute minimum value of...

    Text Solution

    |

  13. The global maximum value of f(x)=(log)(10)(4x^3-12 x^2+11 x-3),x in [2...

    Text Solution

    |

  14. f: RvecR ,f(x) is differentiable such that f(f(x))=k(x^5+x),k!=0)dot T...

    Text Solution

    |

  15. The value of a for which the function f(x)=asinx+(1/3)sin3x has an ext...

    Text Solution

    |

  16. If f(x)=alog|x|+b x^2+x has extreme values at x=-1 a n d a t x=2, then...

    Text Solution

    |

  17. If a function f(x) has f^(prime)(a)=0a n df^(a)=0, then (a) x=a is a...

    Text Solution

    |

  18. The function f(x)=sin^4x+cos^4x increasing if 0<x<pi/8 (b) pi/4<x<(3p...

    Text Solution

    |

  19. The function f(x)=sin^4x+cos^4x increasing if 0<x<pi/8 (b) pi/4<x<(3p...

    Text Solution

    |

  20. If f(x)=x^5-5x^4+5x^3-10 has local maximum and minimum at x=p and x=q ...

    Text Solution

    |