Home
Class 12
MATHS
If f(x)=x+sinx ,g(x)=e^(-x),u=sqrt(c+1)-...

If `f(x)=x+sinx ,g(x)=e^(-x),u=sqrt(c+1)-sqrt(c)` `v=sqrt(c)` `-sqrt(c-1),(c >1),` then `fog(u)gof(v)` (d) `fog(u)

A

`fog(u)ltfog(v)`

B

`gof(u)ltgof(v)`

C

`gof(u)gtgof(v)`

D

`fog(u)ltfog(v)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the functions \( f(x) = x + \sin x \) and \( g(x) = e^{-x} \) along with the expressions for \( u \) and \( v \). ### Step 1: Understanding the Functions 1. **Function \( f(x) \)**: - The function \( f(x) = x + \sin x \) is an increasing function because its derivative \( f'(x) = 1 + \cos x \) is always positive (since \( \cos x \) oscillates between -1 and 1, \( f'(x) \) is always greater than or equal to 0). 2. **Function \( g(x) \)**: - The function \( g(x) = e^{-x} \) is a decreasing function because its derivative \( g'(x) = -e^{-x} \) is always negative. ### Step 2: Analyzing \( u \) and \( v \) Given: - \( u = \sqrt{c+1} - \sqrt{c} \) - \( v = \sqrt{c} - \sqrt{c-1} \) Since \( c > 1 \), we can analyze \( u \) and \( v \): - **For \( u \)**: - As \( c \) increases, \( \sqrt{c+1} \) increases faster than \( \sqrt{c} \), thus \( u \) is positive. - **For \( v \)**: - \( v = \sqrt{c} - \sqrt{c-1} \) is also positive since \( \sqrt{c} > \sqrt{c-1} \) for \( c > 1 \). ### Step 3: Comparing \( u \) and \( v \) To compare \( u \) and \( v \): - We can rationalize both expressions: - \( u = \frac{(\sqrt{c+1} - \sqrt{c})(\sqrt{c+1} + \sqrt{c})}{\sqrt{c+1} + \sqrt{c}} = \frac{1}{\sqrt{c+1} + \sqrt{c}} \) - \( v = \frac{(\sqrt{c} - \sqrt{c-1})(\sqrt{c} + \sqrt{c-1})}{\sqrt{c} + \sqrt{c-1}} = \frac{1}{\sqrt{c} + \sqrt{c-1}} \) Since \( \sqrt{c+1} > \sqrt{c} \) and \( \sqrt{c} > \sqrt{c-1} \), we can conclude that \( v > u \). ### Step 4: Applying the Functions Now we apply the functions: 1. **For \( f(u) \) and \( f(v) \)**: - Since \( f \) is increasing, \( f(u) < f(v) \). 2. **For \( g(f(u)) \) and \( g(f(v)) \)**: - Since \( g \) is decreasing, \( g(f(u)) > g(f(v)) \). ### Conclusion From the analysis: - \( f(u) < f(v) \) implies \( g(f(u)) > g(f(v)) \). Thus, we have: - \( g(f(u)) < g(f(v)) \) is **false**. - \( g(f(u)) > g(f(v)) \) is **true**. - \( f(g(u)) < f(g(v)) \) is **true**. ### Final Answer The correct inequalities are: - \( g(f(u)) < g(f(v)) \) - \( g(f(u)) > g(f(v)) \)

To solve the problem, we need to analyze the functions \( f(x) = x + \sin x \) and \( g(x) = e^{-x} \) along with the expressions for \( u \) and \( v \). ### Step 1: Understanding the Functions 1. **Function \( f(x) \)**: - The function \( f(x) = x + \sin x \) is an increasing function because its derivative \( f'(x) = 1 + \cos x \) is always positive (since \( \cos x \) oscillates between -1 and 1, \( f'(x) \) is always greater than or equal to 0). 2. **Function \( g(x) \)**: - The function \( g(x) = e^{-x} \) is a decreasing function because its derivative \( g'(x) = -e^{-x} \) is always negative. ...
Promotional Banner

Topper's Solved these Questions

  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|48 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Numerical Value Type|24 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercise 6.7|5 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos
  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Comprehension Type|6 Videos

Similar Questions

Explore conceptually related problems

If f(x)=x+sinx ,g(x)=e^(-x),u=sqrt(c+1)-sqrt(c) , v=sqrt(c) -sqrt(c-1),(c >1), then (a) fog(u) gof(v) (d) fog(u) > fog(v)

Let u=sqrt(c+1)-sqrt(c)andv=sqrt(c)-sqrt(c-1),cgt1 and let f(x)=In (1+x),AAx in (-1,oo). Statement I f(u)gtf(v),AAcgt1 because Statement II f(x) is increasing ffunction, hence for ugtv,f(u)gtf(v).

If the function f(x)=(sqrt(1+cosx)+sqrt(1-cosx))/(sqrt(1+cosx)-sqrt(1-cosx)) If the value of f(pi/3)=a+bsqrt(c) then a+b+c=

Find fog and gof if: f(x)=sinx,g(x)=x^(2)

("lim")_(xvec2)(((x^3-4x)/(x^3-8))^(-1)-((x+sqrt(2x))/(x-2)-(sqrt(2))/(sqrt(x)-sqrt(2)))^(-1))i se q u a lto 1/2 (b) 2 (c) 1 (d) none of these

If int(xln(x+sqrt(1+x^2)))/(sqrt(1+x^2))dx =asqrt(1+x^2)ln(x+sqrt(1+x^2))+b x+c , then (A) a=1,b =-1 (B) a=1,b=1 (C) a=-1, b=1 (D) a=-1, b=-1

lim_(x->oo)[sqrt(x+sqrt(x+sqrt(x)))-sqrt(x)] is equal to (a)0 (b) 1/2 (c) log 2 (d) e^4

If f(x)=sin^2x and the composite function g(f(x))=|sinx| , then g(x) is equal to (a) sqrt(x-1) (b) sqrt(x) (c) sqrt(x+1) (d) -sqrt(x)

intsqrt(x/(1-x))\ dx is equal to (a) sin^(-1)sqrt(x)+C (b) sin^(-1){sqrt(x)-sqrt(x(1-x))}+C (c) sin^(-1){sqrt(x(1-x))}+C (d) sin^(-1)sqrt(x)-sqrt(x(1-x))+C

If f(x) = sqrt(2-x) and g(x) = sqrt(1-2x) , then the domain of fog (x) is

CENGAGE ENGLISH-MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS-Exercise
  1. If varphi(x) is a polynomial function and varphi^(prime)(x)>varphi(x)A...

    Text Solution

    |

  2. If f''(x) gt forall in R, f(3)=0 and g(x) =f(tan^(2)x-2tanx+4y)0ltxlt(...

    Text Solution

    |

  3. If f(x)=x+sinx ,g(x)=e^(-x),u=sqrt(c+1)-sqrt(c) v=sqrt(c) -sqrt(c-1),(...

    Text Solution

    |

  4. The number of solutions of the equation x^3+2x^2+6x+2cosx=0 where x in...

    Text Solution

    |

  5. Let f(x)=cospix+10x+3x^2+x^3,-2lt=xlt=3. The absolute minimum value of...

    Text Solution

    |

  6. The global maximum value of f(x)=(log)(10)(4x^3-12 x^2+11 x-3),x in [2...

    Text Solution

    |

  7. f: RvecR ,f(x) is differentiable such that f(f(x))=k(x^5+x),k!=0)dot T...

    Text Solution

    |

  8. The value of a for which the function f(x)=asinx+(1/3)sin3x has an ext...

    Text Solution

    |

  9. If f(x)=alog|x|+b x^2+x has extreme values at x=-1 a n d a t x=2, then...

    Text Solution

    |

  10. If a function f(x) has f^(prime)(a)=0a n df^(a)=0, then (a) x=a is a...

    Text Solution

    |

  11. The function f(x)=sin^4x+cos^4x increasing if 0<x<pi/8 (b) pi/4<x<(3p...

    Text Solution

    |

  12. The function f(x)=sin^4x+cos^4x increasing if 0<x<pi/8 (b) pi/4<x<(3p...

    Text Solution

    |

  13. If f(x)=x^5-5x^4+5x^3-10 has local maximum and minimum at x=p and x=q ...

    Text Solution

    |

  14. Let P(x)=a0+a1x^2+a2x^4++an x^(2n) be a polynomial in a real variable ...

    Text Solution

    |

  15. Let f(x)={(|x|,for 0<|x|lt=2), (1,"for"x=0):} Then at x=0, f(x) has ...

    Text Solution

    |

  16. If f(x)=x^3+b x^2+c x+d and 0<b^2<c , then f(x) is a strictly increasi...

    Text Solution

    |

  17. If f(x)={(sin(x^(2)-3x),xle0 6x+5x^(2),xgt0 then at x=0, f(x) is?

    Text Solution

    |

  18. The greatest value of f(x)=cos(x e^([x])+7x^2-3x),x in [-1,oo], is (wh...

    Text Solution

    |

  19. The function f(x)=(4sin^2x-1)^n(x^2-x+1),n in N , has a local minimum...

    Text Solution

    |

  20. The true set of real values of x for which the function f(x)=xlnx-x+1 ...

    Text Solution

    |