Home
Class 12
MATHS
Let f(x)={x+2,-1lelt0 1,x=0 (x)/(2),...

Let `f(x)={x+2,-1lelt0`
`1,x=0
(x)/(2),0ltxle1`

A

a point of minima

B

a point of maxima

C

both points of minima and maxima

D

neither a pointof minimanor that of maxima

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the piecewise function defined as: \[ f(x) = \begin{cases} x + 2 & \text{for } -1 \leq x < 0 \\ 1 & \text{for } x = 0 \\ \frac{x}{2} & \text{for } 0 < x \leq 1 \end{cases} \] We will check the behavior of the function at the critical points and the endpoints of the intervals to determine if there are any maxima or minima. ### Step 1: Evaluate the function at the critical point \(x = 0\) We need to find the left-hand limit and right-hand limit of \(f(x)\) as \(x\) approaches \(0\). - For \(x\) approaching \(0\) from the left (\(x \to 0^-\)): \[ f(0^-) = 0 + 2 = 2 \] - For \(x\) approaching \(0\) from the right (\(x \to 0^+\)): \[ f(0^+) = \frac{0}{2} = 0 \] - At \(x = 0\): \[ f(0) = 1 \] ### Step 2: Compare the values Now we compare the values of \(f(x)\) around \(x = 0\): - \(f(0^-) = 2\) - \(f(0) = 1\) - \(f(0^+) = 0\) ### Step 3: Determine maxima and minima To determine whether \(x = 0\) is a point of maxima or minima, we analyze the behavior of \(f(x)\): - As \(x\) approaches \(0\) from the left, \(f(x)\) is decreasing from \(2\) to \(1\). - As \(x\) approaches \(0\) from the right, \(f(x)\) is decreasing from \(1\) to \(0\). Since \(f(0^-) > f(0) > f(0^+)\), we can conclude that: - \(f(0)\) is less than the value of \(f(x)\) just before it and greater than the value of \(f(x)\) just after it. ### Conclusion Since \(f(0)\) is lower than both \(f(0^-)\) and \(f(0^+)\), it indicates that \(x = 0\) is a point of local maxima. However, since \(f(0^+) < f(0)\), it is not a global maximum or minimum. Thus, we conclude that \(x = 0\) is neither a point of maxima nor minima. ### Final Answer The point \(x = 0\) is neither a point of maxima nor minima. ---

To solve the problem, we need to analyze the piecewise function defined as: \[ f(x) = \begin{cases} x + 2 & \text{for } -1 \leq x < 0 \\ 1 & \text{for } x = 0 \\ \frac{x}{2} & \text{for } 0 < x \leq 1 ...
Promotional Banner

Topper's Solved these Questions

  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|48 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Numerical Value Type|24 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercise 6.7|5 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos
  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Comprehension Type|6 Videos

Similar Questions

Explore conceptually related problems

Let f(x)={(x+1, -1lexle0),(-x,0ltxle1):} then

If f(x) is defined as f(x)={{:(x,0lexlt(1)/(2)),(0,x=(1)/(2)),(1-x,(1)/(2)ltxle1):} then evaluate : lim_(xrarr(1)/(2)) f(x)

Let f(x)={:{(x^(2)+4x",",-3lexle0),(-sinx",",0ltxle(pi)/(2)),(-cosx-1",",(pi)/(2)ltxlepi):} then

Discuss the continuity of the function f(x)= {(x , 0 le x lt1/2 ),( 12,x=1/2),( 1-x , 1/2ltxle1):} at the point x=1//2 .

Let f(x)={x+1,x >0, 2-x ,xlt=0 and g(x)={x+3,x 0)g(f(x)).

Let f(x)={{:(5x-4",",0ltxle1),(4x^(3)-3x",",1ltxlt2.):} Find lim_(xto1)f(x).

Let f(x)={{:( 0,x=0),(x^(2) sin pi//2x,|x| lt 1),(x|x|, |x| ge 1):} . Then , f(x) is

Discuss the continuity of the function f(x) at x=1//2 , where f(x)={[1/(2-x) ,0lexlt1/2],[ 1,x=1/2],[ 3/(2-x) ,1/2ltxle1]}

Let f(x) ={{:(1+x,0lexle2),(3-x,2ltxle3):} then discuss the continuity of g(x) =f(f(x)).

Let f(x)={{:((x+1)^(3),-2ltxle-1),(x^(2//3)-1,-1ltxle1),(-(x-1)^(2),1ltxlt2):} . The total number of maxima and minima of f(x) is

CENGAGE ENGLISH-MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS-Exercise
  1. The function f(x)=(ln(pi+x))/(ln(e+x)) is

    Text Solution

    |

  2. If the function f(x)=2x^3-9ax^2+12a^2x+1, where a gt 0, attains its m...

    Text Solution

    |

  3. Let f(x)={x+2,-1lelt0 1,x=0 (x)/(2),0ltxle1

    Text Solution

    |

  4. If f(x)={sin^(-1)(sinx),xgt0 (pi)/(2),x=0,then cos^(-1)(cosx),xlt0

    Text Solution

    |

  5. A function f is defined by f(x)=|x|^m|x-1|^nAAx in Rdot The local max...

    Text Solution

    |

  6. Let the function f(x) be defined as follows:f(x)= x^3 +x^2 −10x,−1≤x<...

    Text Solution

    |

  7. Consider the function f:(-oo,oo)vec(-oo,oo) defined by f(x)=(x^2+a)/(x...

    Text Solution

    |

  8. F(x) = 4 tan x-tan^(2)x+tan^(3)x,xnenpi+(pi)/(2)

    Text Solution

    |

  9. Let h(x)=x^(m/n) for x in R , where m and n are odd numbers where 0<...

    Text Solution

    |

  10. The greatest value of the function f(x)=(sin2x)/(sin(x+pi/4)) on the i...

    Text Solution

    |

  11. The minimum value of e^((2x^2-2x+1)sin^(2)x) is a. e (b) 1/e (c) 1 ...

    Text Solution

    |

  12. The maximum value of x^4ehat-x^2 is e^2 (b) e^(-2) (c) 12 e^(-2) (d...

    Text Solution

    |

  13. If a^2x^4+b^2y^4=c^6, then the maximum value of x y is (c^2)/(sqrt(a b...

    Text Solution

    |

  14. Least natural number a for which x+ax^(-2)gt2,AAx in(0,oo) is

    Text Solution

    |

  15. f(x)={4x-x^3+ln(a^2-3a+3),0lt=x<3x-18 ,xgeq3 complete set of values o...

    Text Solution

    |

  16. f(x)={2-|x^2+5x+6|,x!=2a^2+1,x=-2T h e nt h er a ngeofa , so that f(x...

    Text Solution

    |

  17. A differentiable function f(x) has a relative minimum at x=0. Then the...

    Text Solution

    |

  18. if f(x)=4x^3-x^2-2x+1 and g(x)={min f(t): 0<=t<=x; 0<=x<=1, 3-x : 1...

    Text Solution

    |

  19. If f: RvecRa n dg: RvecR are two functions such that f(x)+f^(x)=-xg(x)...

    Text Solution

    |

  20. If A gt 0, B gt 0, A+B= pi //3, and maximum value of tan A tan B is M ...

    Text Solution

    |