Home
Class 12
MATHS
If f(x)={sin^(-1)(sinx),xgt0 (pi)/(2),...

If `f(x)={sin^(-1)(sinx),xgt0`
`(pi)/(2),x=0,then
cos^(-1)(cosx),xlt0`

A

x=0is apoint of maxima

B

x=0 is a point of minima

C

x=0 is a point of intersectionn

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function defined piecewise: 1. **Understanding the function**: - The function \( f(x) \) is defined as: \[ f(x) = \begin{cases} \sin^{-1}(\sin x) & \text{if } x > 0 \\ \frac{\pi}{2} & \text{if } x = 0 \\ \cos^{-1}(\cos x) & \text{if } x < 0 \end{cases} \] 2. **Evaluating \( f(x) \) for \( x > 0 \)**: - For \( x > 0 \), \( f(x) = \sin^{-1}(\sin x) \). - The range of \( \sin^{-1}(y) \) is \( [-\frac{\pi}{2}, \frac{\pi}{2}] \). - Therefore, for \( x \) in the interval \( (0, \frac{\pi}{2}) \), \( f(x) = x \). - For \( x \) in the interval \( (\frac{\pi}{2}, \frac{3\pi}{2}) \), \( f(x) = \pi - x \). 3. **Evaluating \( f(x) \) for \( x = 0 \)**: - For \( x = 0 \), we have \( f(0) = \frac{\pi}{2} \). 4. **Evaluating \( f(x) \) for \( x < 0 \)**: - For \( x < 0 \), \( f(x) = \cos^{-1}(\cos x) \). - The range of \( \cos^{-1}(y) \) is \( [0, \pi] \). - For \( x \) in the interval \( (-\pi, 0) \), \( f(x) = -x \). - For \( x \) in the interval \( (-2\pi, -\pi) \), \( f(x) = 2\pi + x \). 5. **Summary of the function**: - Thus, we can summarize the function \( f(x) \) as: \[ f(x) = \begin{cases} x & \text{if } 0 < x < \frac{\pi}{2} \\ \pi - x & \text{if } \frac{\pi}{2} < x < \frac{3\pi}{2} \\ \frac{\pi}{2} & \text{if } x = 0 \\ -x & \text{if } -\pi < x < 0 \\ 2\pi + x & \text{if } -2\pi < x < -\pi \end{cases} \] 6. **Conclusion**: - The function is defined piecewise and behaves differently depending on the interval in which \( x \) lies.

To solve the problem, we need to analyze the function defined piecewise: 1. **Understanding the function**: - The function \( f(x) \) is defined as: \[ f(x) = \begin{cases} \sin^{-1}(\sin x) & \text{if } x > 0 \\ ...
Promotional Banner

Topper's Solved these Questions

  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|48 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Numerical Value Type|24 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercise 6.7|5 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos
  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Comprehension Type|6 Videos

Similar Questions

Explore conceptually related problems

Iff(x)={sin^(-1)(sinx),x >0pi/2,x=0,t h e ncos^(-1)(cosx),x<0

Differentiate the following function with respect to x : sin^(-1)(sinx),x in [0,2pi] cos^(-1)(cosx),x in [0,2pi] tan^(-1)(tanx),x in [0,pi]-{pi/2}

If A=lim_(x to 0) (sin^(-1)(sinx))/(cos^(-1)(cosx))and B=lim_(x to 0)([|x|])/(x), then

If f(x)={(sin(x^(2)-3x),xle0 6x+5x^(2),xgt0 then at x=0, f(x) is?

If f(x)= {{:(a+(sin[x])/x,xgt0),(2,x=0),(b+[(sinx-x)/(x^(3))],","xgt0):} (where [.] denotes the greatest integer function). If f(x) is continuous at x=0 then a+b is equal to

Show that cot^(-1)x={(tan^(-1)(1//x),xgt0),(pi+tan^(-1)(1//x),xlt0):}

Let f(x){:{(1+sinx", "xlt0),(x^(2)-x+1ge0):} Then

If f(x)=sqrt(1-sin2x) , then f^(prime)(x) is equal to (a) -(cosx+sinx) ,for x in (pi/4,pi/2) (b) cosx+sinx ,for x in (0,pi/4) (c) -(cosx+sinx) ,for x in (0,pi/4) (d) cosx-sinx ,for x in (pi/4,pi/2)

The domain of the function f(x)=sqrt(abs(sin^(-1)(sinx))-cos^(-1)(cosx)) in [0,2pi] is

If f(x)={(1,xlt0),(1+sinx,0 le x le(pi)/2),(2+(x-(pi)/2),(pi)/2lex):} then which of the following is true for f(x)?

CENGAGE ENGLISH-MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS-Exercise
  1. If the function f(x)=2x^3-9ax^2+12a^2x+1, where a gt 0, attains its m...

    Text Solution

    |

  2. Let f(x)={x+2,-1lelt0 1,x=0 (x)/(2),0ltxle1

    Text Solution

    |

  3. If f(x)={sin^(-1)(sinx),xgt0 (pi)/(2),x=0,then cos^(-1)(cosx),xlt0

    Text Solution

    |

  4. A function f is defined by f(x)=|x|^m|x-1|^nAAx in Rdot The local max...

    Text Solution

    |

  5. Let the function f(x) be defined as follows:f(x)= x^3 +x^2 −10x,−1≤x<...

    Text Solution

    |

  6. Consider the function f:(-oo,oo)vec(-oo,oo) defined by f(x)=(x^2+a)/(x...

    Text Solution

    |

  7. F(x) = 4 tan x-tan^(2)x+tan^(3)x,xnenpi+(pi)/(2)

    Text Solution

    |

  8. Let h(x)=x^(m/n) for x in R , where m and n are odd numbers where 0<...

    Text Solution

    |

  9. The greatest value of the function f(x)=(sin2x)/(sin(x+pi/4)) on the i...

    Text Solution

    |

  10. The minimum value of e^((2x^2-2x+1)sin^(2)x) is a. e (b) 1/e (c) 1 ...

    Text Solution

    |

  11. The maximum value of x^4ehat-x^2 is e^2 (b) e^(-2) (c) 12 e^(-2) (d...

    Text Solution

    |

  12. If a^2x^4+b^2y^4=c^6, then the maximum value of x y is (c^2)/(sqrt(a b...

    Text Solution

    |

  13. Least natural number a for which x+ax^(-2)gt2,AAx in(0,oo) is

    Text Solution

    |

  14. f(x)={4x-x^3+ln(a^2-3a+3),0lt=x<3x-18 ,xgeq3 complete set of values o...

    Text Solution

    |

  15. f(x)={2-|x^2+5x+6|,x!=2a^2+1,x=-2T h e nt h er a ngeofa , so that f(x...

    Text Solution

    |

  16. A differentiable function f(x) has a relative minimum at x=0. Then the...

    Text Solution

    |

  17. if f(x)=4x^3-x^2-2x+1 and g(x)={min f(t): 0<=t<=x; 0<=x<=1, 3-x : 1...

    Text Solution

    |

  18. If f: RvecRa n dg: RvecR are two functions such that f(x)+f^(x)=-xg(x)...

    Text Solution

    |

  19. If A gt 0, B gt 0, A+B= pi //3, and maximum value of tan A tan B is M ...

    Text Solution

    |

  20. If f(x)=(t+3x-x^2)/(x-4), where t is a parameter that has minimum and ...

    Text Solution

    |