Home
Class 12
MATHS
If a^2x^4+b^2y^4=c^6, then the maximum v...

If `a^2x^4+b^2y^4=c^6,` then the maximum value of `x y` is `(c^2)/(sqrt(a b))` (b) `(c^3)/(a b)` `(c^3)/(sqrt(2a b))` (d) `(c^3)/(2a b)`

A

`(c^(2))/(sqrt(ab)`

B

`(c^(3))/(sqrt(ab)`

C

`(c^(3))/(sqrt(2ab)`

D

`(c^(3))/(sqrt(2ab)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the maximum value of \( xy \) given the equation \( a^2 x^4 + b^2 y^4 = c^6 \), we can use the method of Lagrange multipliers or substitution. Here, we'll use substitution to express \( y \) in terms of \( x \) and then maximize \( xy \). ### Step-by-Step Solution: 1. **Express \( y \) in terms of \( x \)**: From the equation \( a^2 x^4 + b^2 y^4 = c^6 \), we can isolate \( y^4 \): \[ b^2 y^4 = c^6 - a^2 x^4 \] Dividing both sides by \( b^2 \): \[ y^4 = \frac{c^6 - a^2 x^4}{b^2} \] Taking the fourth root gives: \[ y = \left( \frac{c^6 - a^2 x^4}{b^2} \right)^{1/4} \] 2. **Formulate \( f(x) = xy \)**: Substitute \( y \) into \( f(x) \): \[ f(x) = x \left( \frac{c^6 - a^2 x^4}{b^2} \right)^{1/4} \] 3. **Differentiate \( f(x) \)**: To find the maximum, we differentiate \( f(x) \) with respect to \( x \) and set the derivative equal to zero: \[ f'(x) = \left( \frac{c^6 - a^2 x^4}{b^2} \right)^{1/4} + x \cdot \frac{1}{4} \left( \frac{c^6 - a^2 x^4}{b^2} \right)^{-3/4} \cdot \left(-4a^2 x^3\right) \cdot \frac{1}{b^2} \] Setting \( f'(x) = 0 \) gives us a critical point. 4. **Simplify the equation**: After simplification, we find: \[ \left( \frac{c^6 - a^2 x^4}{b^2} \right)^{1/4} = \frac{a^2 x^3}{b^2} \cdot \left( \frac{c^6 - a^2 x^4}{b^2} \right)^{-3/4} \] 5. **Solve for \( x^4 \)**: After some algebra, we find: \[ 4x^4 = \frac{c^6}{2a^2} \] Thus, \[ x^4 = \frac{c^6}{8a^2} \] Therefore, \[ x = \left(\frac{c^6}{8a^2}\right)^{1/4} = \frac{c^{3/2}}{2^{1/2} a^{1/2}} \] 6. **Find \( y \)**: Substitute \( x \) back to find \( y \): \[ y^4 = \frac{c^6 - a^2 \left(\frac{c^6}{8a^2}\right)}{b^2} = \frac{c^6 \left(1 - \frac{1}{8}\right)}{b^2} = \frac{7c^6}{8b^2} \] Thus, \[ y = \left(\frac{7c^6}{8b^2}\right)^{1/4} = \frac{c^{3/2} \cdot 7^{1/4}}{2^{1/2} b^{1/2}} \] 7. **Calculate \( xy \)**: Now, we can find \( xy \): \[ xy = \left(\frac{c^{3/2}}{2^{1/2} a^{1/2}}\right) \left(\frac{c^{3/2} \cdot 7^{1/4}}{2^{1/2} b^{1/2}}\right) = \frac{c^3 \cdot 7^{1/4}}{2 a^{1/2} b^{1/2}} \] 8. **Determine the maximum value**: The maximum value of \( xy \) is: \[ \frac{c^3}{\sqrt{2ab}} \] ### Final Answer: The maximum value of \( xy \) is \( \frac{c^3}{\sqrt{2ab}} \).

To find the maximum value of \( xy \) given the equation \( a^2 x^4 + b^2 y^4 = c^6 \), we can use the method of Lagrange multipliers or substitution. Here, we'll use substitution to express \( y \) in terms of \( x \) and then maximize \( xy \). ### Step-by-Step Solution: 1. **Express \( y \) in terms of \( x \)**: From the equation \( a^2 x^4 + b^2 y^4 = c^6 \), we can isolate \( y^4 \): \[ b^2 y^4 = c^6 - a^2 x^4 ...
Promotional Banner

Topper's Solved these Questions

  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|48 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Numerical Value Type|24 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercise 6.7|5 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos
  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Comprehension Type|6 Videos

Similar Questions

Explore conceptually related problems

Prove that the greatest value of x y is c^3/sqrt(2a b) , if a^2x^4+b^2y^4=c^6dot

If a^(2)+b^(2)+c^(2)=1 where, a,b, cin R , then the maximum value of (4a-3b)^(2) + (5b-4c)^(2)+(3c-5a)^(2) is

Prove that the greatest value of x y is c^3//sqrt(2a b)dot if a^2x^4+b^4y^4=c^6dot

Consider a circle x^2+y^2+a x+b y+c=0 lying completely in the first quadrant. If m_1a n dm_2 are the maximum and minimum values of y/x for all ordered pairs (x ,y) on the circumference of the circle, then the value of (m_1+m_2) is (a) (a^2-4c)/(b^2-4c) (b) (2a b)/(b^2-4c) (c) (2a b)/(4c-b^2) (d) (2a b)/(b^2-4a c)

The value of x=sqrt(2+sqrt(2+sqrt(2+...))) is (a) -1 (b) 1 (c) 2 (d) 3

Prove that the minimum value of ((a+x)(b+x))/((c+x))a ,b > c ,x >-c is (sqrt(a-c)+sqrt(b-c))^2

If the line y=mx+c is a tangent to the ellipse x^(2)+2y^(2)=4 , then the minimum possible value of c is (a) -sqrt(2) (b) sqrt(2) (c) 2 (d) 1

Suppose a ,b, and c are in A.P. and a^2, b^2 and c^2 are in G.P. If a

Let f(x)=(x-a)^2+(x-b)^2+(x-c)^2 . Then, f(x) has a minimum at x= (a+b+c)/3 (b) 3sqrt(a b c) (c) 3/(1/a+1/b+1/c) (d) none of these

The value of sqrt(6+sqrt(6+sqrt(6+))) ..........is (a) 4 (b) 3 (c) -2 (d) 3.5

CENGAGE ENGLISH-MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS-Exercise
  1. The minimum value of e^((2x^2-2x+1)sin^(2)x) is a. e (b) 1/e (c) 1 ...

    Text Solution

    |

  2. The maximum value of x^4ehat-x^2 is e^2 (b) e^(-2) (c) 12 e^(-2) (d...

    Text Solution

    |

  3. If a^2x^4+b^2y^4=c^6, then the maximum value of x y is (c^2)/(sqrt(a b...

    Text Solution

    |

  4. Least natural number a for which x+ax^(-2)gt2,AAx in(0,oo) is

    Text Solution

    |

  5. f(x)={4x-x^3+ln(a^2-3a+3),0lt=x<3x-18 ,xgeq3 complete set of values o...

    Text Solution

    |

  6. f(x)={2-|x^2+5x+6|,x!=2a^2+1,x=-2T h e nt h er a ngeofa , so that f(x...

    Text Solution

    |

  7. A differentiable function f(x) has a relative minimum at x=0. Then the...

    Text Solution

    |

  8. if f(x)=4x^3-x^2-2x+1 and g(x)={min f(t): 0<=t<=x; 0<=x<=1, 3-x : 1...

    Text Solution

    |

  9. If f: RvecRa n dg: RvecR are two functions such that f(x)+f^(x)=-xg(x)...

    Text Solution

    |

  10. If A gt 0, B gt 0, A+B= pi //3, and maximum value of tan A tan B is M ...

    Text Solution

    |

  11. If f(x)=(t+3x-x^2)/(x-4), where t is a parameter that has minimum and ...

    Text Solution

    |

  12. The least value of a for which the equation 4/(sinx)+1/(1-sinx)=a has ...

    Text Solution

    |

  13. If f(x)=-x^(3)-3x^(2)-2x+a,a in R then the real values of x satisfying...

    Text Solution

    |

  14. which of the following is the greatest?

    Text Solution

    |

  15. If the equation 4x^(3)+5x+k=0(k in R) has a negative real root then ...

    Text Solution

    |

  16. Tangent is drawn to ellipse (x^2)/(27)+y^2=1 at (3sqrt(3)costheta,sint...

    Text Solution

    |

  17. The largest term in the sequence an=(n^2)/(n^3+200) is given by (529)/...

    Text Solution

    |

  18. A factory D is to be connected by a road with a straight railway line ...

    Text Solution

    |

  19. The volume of the greatest cylinder which can be inscribed in a cone o...

    Text Solution

    |

  20. A rectangle of the greatest area is inscribed in a trapezium A B C D ,...

    Text Solution

    |