Home
Class 12
MATHS
L e tf(x)={|x^2-3x|+a ,0lt=x<3/2 -2x+3,...

`L e tf(x)={|x^2-3x|+a ,0lt=x<3/2 -2x+3,xgeq3/2` If `f(x)` has a local maxima at `x=3/2` , then greatest value of `|4a|` is _________

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function \( f(x) \) given by: \[ f(x) = \begin{cases} |x^2 - 3x + a| & \text{for } 0 \leq x < \frac{3}{2} \\ -2x + 3 & \text{for } x \geq \frac{3}{2} \end{cases} \] We are tasked with finding the greatest value of \( |4a| \) given that \( f(x) \) has a local maxima at \( x = \frac{3}{2} \). ### Step 1: Evaluate \( f\left(\frac{3}{2}\right) \) First, we need to calculate \( f\left(\frac{3}{2}\right) \) using the second piece of the function since \( x = \frac{3}{2} \) falls in the range \( x \geq \frac{3}{2} \): \[ f\left(\frac{3}{2}\right) = -2\left(\frac{3}{2}\right) + 3 = -3 + 3 = 0 \] ### Step 2: Find the left-hand limit as \( x \) approaches \( \frac{3}{2} \) Next, we need to find the value of \( f(x) \) as \( x \) approaches \( \frac{3}{2} \) from the left: \[ f\left(\frac{3}{2}^-\right) = \left|\left(\frac{3}{2}\right)^2 - 3\left(\frac{3}{2}\right) + a\right| \] Calculating the quadratic expression: \[ \left(\frac{3}{2}\right)^2 = \frac{9}{4}, \quad 3\left(\frac{3}{2}\right) = \frac{9}{2} = \frac{18}{4} \] Thus, \[ f\left(\frac{3}{2}^-\right) = \left|\frac{9}{4} - \frac{18}{4} + a\right| = \left|a - \frac{9}{4}\right| \] ### Step 3: Set up the condition for local maxima For \( f(x) \) to have a local maximum at \( x = \frac{3}{2} \), the value from the left must be greater than or equal to the value from the right: \[ \left|a - \frac{9}{4}\right| \geq 0 \] This condition simplifies to: \[ \left|a - \frac{9}{4}\right| \geq 0 \] Since this is always true, we need to ensure that the left-hand limit is equal to the right-hand limit for a local maximum: \[ \left|a - \frac{9}{4}\right| = 0 \] This implies: \[ a - \frac{9}{4} = 0 \quad \Rightarrow \quad a = \frac{9}{4} \] ### Step 4: Find the value of \( 4a \) Now, we can find \( 4a \): \[ 4a = 4 \times \frac{9}{4} = 9 \] ### Step 5: Determine the greatest value of \( |4a| \) Since \( a \) can only take the value \( \frac{9}{4} \) for the local maximum condition to hold, we find: \[ |4a| = |9| = 9 \] Thus, the greatest value of \( |4a| \) is: \[ \boxed{9} \]

To solve the problem, we need to analyze the function \( f(x) \) given by: \[ f(x) = \begin{cases} |x^2 - 3x + a| & \text{for } 0 \leq x < \frac{3}{2} \\ -2x + 3 & \text{for } x \geq \frac{3}{2} \end{cases} ...
Promotional Banner

Topper's Solved these Questions

  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|13 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Linked comprehension Type|2 Videos
  • MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple correct answers type|48 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos
  • MONOTONOCITY AND NAXINA-MINIMA OF FUNCTIONS

    CENGAGE ENGLISH|Exercise Comprehension Type|6 Videos

Similar Questions

Explore conceptually related problems

L e tf(x)={x+2,x<-1x^2,-1lt=x<1(x-2)^2,xgeq1 Then number of times f^(prime)(x) changes its sign in (-oo,oo) is___

L e tf(x)={x+2 , x <-1 ; x^2 , -1 lt= x < 1 and (x-2)^2 , x geq 1 Then number of times f^(prime)(x) changes its sign in (-oo,oo) is___

L e tf(x)={(|x^3+x^2+3x+sinx|(3+sin(1/x)) ,, x!=0), (0 ,, x=0):} then the number of point where f(x) attains its minimum value is_____

If f(x)=max{x^3, x^2,1/(64)}AAx in [0,oo),t h e n f(x)={x^2,0lt=xlt=1x^3,x > 0 f(x) = { 1/(64), 0 lt= x lt = 1/4 x^2, 1/4 1 f(x)={1/(64),0lt=xlt=1/8x^2,1/8 1 f(x)={1/(64),0lt=xlt=1/8x^3,x >1/8

Let f (x)= {{:(x ^(2),0lt x lt2),(2x-3, 2 le x lt3),(x+2, x ge3):} then the tuue equations:

if f(x)= {x^3+x^2,for 0lt=xlt=2x+2 ,for2

The relation f is defined by f(x)={x^2,0lt=xlt=3 3x ,3lt=xlt=10 The relation g is defined by g(x)={x^2,0lt=xlt=3 3x ,2lt=xlt=10 Show that f is a function and g is not a function.

The relation f is defined by f(x)={x^2,0lt=xlt=3 3x ,3lt=xlt=10 The relating g is defined by g(x)={x^2,0lt=xlt=3 3x ,2lt=xlt=10 Show that f is a function and g is not a function.

L e tf(x)=x^3-(3x^2)/2+x+1/4 Then the value of (int_(1/4)^(3/4)f(f(x))dx)^(-1) is____

Evaluate the following integral: int_0^9f(x)dx ,\ w h e r e\ f(x)=sinx,\ 0lt=xlt=pi//2 w h e r e\ f(x)= 1 ,pi/2lt=xlt=3 w h e r e\ f(x)=e^(x-3),\ 3lt=xlt=9

CENGAGE ENGLISH-MONOTONICITY AND MAXIMA MINIMA OF FUNCTIONS-Numerical Value Type
  1. Consider P(x) to be a polynomial of degree 5 having extremum at x=-1,1...

    Text Solution

    |

  2. If m is the minimum value of f(x , y)=x^2-4x+y^2+6y when x and y are s...

    Text Solution

    |

  3. For a cubic function y=f(x),f^(x)=4x at each point (x , y) on it and i...

    Text Solution

    |

  4. Number of integral values of b for which the equation (x^3)/3-x=b has ...

    Text Solution

    |

  5. L e tf(x)={x+2,x<-1x^2,-1lt=x<1(x-2)^2,xgeq1 Then number of times f^(...

    Text Solution

    |

  6. The number of nonzero integral values of a for which the function f(x)...

    Text Solution

    |

  7. L egf(x)={x^(3/5),ifxlt=1-(x-2)^3,ifx >1 Then the number of critical ...

    Text Solution

    |

  8. A right triangle is drawn in a semicircle of radius 1/2 with one of...

    Text Solution

    |

  9. A rectangle with one side lying along the x-axis is to be inscribed in...

    Text Solution

    |

  10. The least integral value of x where f(x)=(log)(1/2)(x^2-2x-3) is monot...

    Text Solution

    |

  11. The least area of a circle circumscribing any right triangle of area 9...

    Text Solution

    |

  12. L e tf(x)={|x^2-3x|+a ,0lt=x<3/2 -2x+3,xgeq3/2 If f(x) has a local m...

    Text Solution

    |

  13. Let f(x)=30-2x -x^3, the number of the positive integral values of x w...

    Text Solution

    |

  14. Let f(x) ={{:(x(x-1)(x-2),(0lexltn),sin(pix),(nlexle2n):} least valu...

    Text Solution

    |

  15. Number of critical point of the function f(X) =x+sqrt(|x|) is .

    Text Solution

    |

  16. consider f(X) =(1)/(1+|x|)+(1)/(1+|x-1|) Let x(1) and x(2) be point wh...

    Text Solution

    |

  17. Let f be a function defined on R (the set of all real numbers) such th...

    Text Solution

    |

  18. Let I RvecI R be defined as f(x)=|x|++x^2-1|dot The total number of po...

    Text Solution

    |

  19. Let p(x) be a real polynomial of least degree which has a local maximu...

    Text Solution

    |

  20. A cylindrical container is to be made from certain solid material with...

    Text Solution

    |