Home
Class 12
MATHS
If a > b >0, with the aid of Lagranges m...

If `a > b >0,` with the aid of Lagranges mean value theorem, prove that `n b^(n-1)(a-b)>1.` `n b^(n-1)(a-b)> a^n-b^n > n a^(n-1)(a-b),if0

Promotional Banner

Topper's Solved these Questions

  • APPLICATION OF DERIVATIVES

    CENGAGE ENGLISH|Exercise EXERCISES|57 Videos
  • APPLICATION OF DERIVATIVES

    CENGAGE ENGLISH|Exercise MULTIPLE CORRECT ANSWER TYPE|16 Videos
  • APPLICATION OF DERIVATIVES

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 5.7|8 Videos
  • 3D COORDINATION SYSTEM

    CENGAGE ENGLISH|Exercise DPP 3.1|11 Videos
  • APPLICATION OF INTEGRALS

    CENGAGE ENGLISH|Exercise All Questions|142 Videos

Similar Questions

Explore conceptually related problems

If a > b >0, with the aid of Lagranges mean value theorem, prove that n b^(n-1)(a-b) < a^n -b^n < n a^(n-1)(a-b) , if n >1. n b^(n-1)(a-b) > a^n-b^n > n a^(n-1)(a-b) , if 0 < n < 1.

If a > b and n is a positive integer, then prove that a^n-b^n > n(a b)^((n-1)//2)(a-b)dot

If the geometric mean of a and b is (a^(n+1)+b^(n+1))/(a^(n)+b^(n)) then n = ?

Find n, so that (a^(n+1)+b^(n+1))/(a^(n)+b^(n))(a ne b ) be HM beween a and b.

If a, b, c, d are in G.P., prove that (a^n+b^n),(b^n+c^n),(c^n+a^n) are in G.P.

In the arithmetic mean of a and b is (a^(n)+b^(n))/(a^(n-1)+b^(n-1)) then n= ?

If n. sin(A+2B)=sinA , then prove that: tan(A+B)=(1+n)/(1-n).tanB

The algebraic sum of the deviations of a set of n values from their mean is (a) 0 (b) n-1 (c) n (d) n+1

If a\ a n d\ b are distinct integers, prove that a^n-b^n is divisible by (a-b) where n in NN .

Find the value of n so that (a^(n+1)+b^(n+1))/(a^n+b^n) may be the geometric mean between a and b.