Home
Class 12
MATHS
I= int ( dx)/( ("arc" cos x)^(5) sqrt(1-...

`I= int ( dx)/( ("arc" cos x)^(5) sqrt(1-x^2) )`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int \frac{dx}{(\cos^{-1} x)^5 \sqrt{1 - x^2}}, \] we will follow these steps: ### Step 1: Substitution Let \( t = \cos^{-1} x \). Then, we differentiate \( t \) with respect to \( x \): \[ \frac{dt}{dx} = -\frac{1}{\sqrt{1 - x^2}}. \] This implies that \[ dx = -\sqrt{1 - x^2} \, dt. \] ### Step 2: Express \( \sqrt{1 - x^2} \) in terms of \( t \) From the substitution \( t = \cos^{-1} x \), we know that \[ x = \cos t. \] Thus, \[ \sqrt{1 - x^2} = \sqrt{1 - \cos^2 t} = \sin t. \] ### Step 3: Substitute in the integral Now, substituting \( dx \) and \( \sqrt{1 - x^2} \) into the integral, we get: \[ I = \int \frac{-\sin t \, dt}{t^5 \sin t}. \] The \( \sin t \) terms cancel out: \[ I = -\int \frac{dt}{t^5}. \] ### Step 4: Integrate Now we can integrate: \[ I = -\left(-\frac{1}{4t^4}\right) + C = \frac{1}{4t^4} + C. \] ### Step 5: Substitute back for \( t \) Recall that \( t = \cos^{-1} x \). Therefore, we substitute back: \[ I = \frac{1}{4(\cos^{-1} x)^4} + C. \] ### Final Answer The final result of the integral is: \[ I = \frac{1}{4(\cos^{-1} x)^4} + C. \] ---
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS, BASIC METHODS OF INTEGRATION

    IA MARON|Exercise 4.3. Integration by Parts|28 Videos
  • INDEFINITE INTEGRALS, BASIC METHODS OF INTEGRATION

    IA MARON|Exercise 4.4. Reduction Formulas|2 Videos
  • INDEFINITE INTEGRALS, BASIC METHODS OF INTEGRATION

    IA MARON|Exercise 4.4. Reduction Formulas|2 Videos
  • IMPROPER INTEGRALS

    IA MARON|Exercise 8.4 ADDITIONAL PROBLEMS|1 Videos
  • INTRODUCTION OF MATHEMATICAL ANALYSIS

    IA MARON|Exercise Additional Problems|34 Videos

Similar Questions

Explore conceptually related problems

int x^(2) "arc" cos x dx .

Compute the integral I = int_(0)^(1) ("arc sin x")/(sqrt(1 - x^(2)))dx

int ( "arc" sin x dx)/( sqrt( 1+ x)) .

I=int sqrt(1-x^(2))dx

int(x)/(sqrt(1-x^(2))*cos^(2)sqrt(1-x^(2)))dx=

Integration of other transcendental functions I=int(x arc tan x dx)/(sqrt(1+x^(2))).

int(x+cos^(-1)x)/(sqrt(1-x^(2)))dx

int(dx)/(sqrt(1+cos2x))

int(1)/(cos^(-1)x.sqrt(1-x^(2)))dx=

IA MARON-INDEFINITE INTEGRALS, BASIC METHODS OF INTEGRATION-4.2. Integration by Substitution
  1. I= int ( x^2 + 3) /( sqrt ( 2x -5)^(3) ) dx.

    Text Solution

    |

  2. Evaluate: int(x^2-1)/((x^4+3x^2+1)tan^(-1)(x+1/x))dx

    Text Solution

    |

  3. I= int ( sqrt( alpha^(2) - x^(2) ) )/( x^4) dx.

    Text Solution

    |

  4. I= int ( dx)/( a^(2) sin^(2) x + b^(2) cos^(2) x) .

    Text Solution

    |

  5. I= int root(3) ( 1+ 3 sin x) cos x dx.

    Text Solution

    |

  6. I= int ( sin x dx)/( sqrt( cos x) ).

    Text Solution

    |

  7. I= int ( dx)/( ("arc" cos x)^(5) sqrt(1-x^2) ).

    Text Solution

    |

  8. I= int ( x^2 + 1) /( root( 3) ( x^(3) + 3x + 1) )d x.

    Text Solution

    |

  9. I= int ( sin 2 x)/( 1+ sin^(2) x) dx.

    Text Solution

    |

  10. I= int ( 1+ "In" x)/( 3+ x "In" x) dx.

    Text Solution

    |

  11. Evaluate the following integrals : (a) int ( root( 3) (1+ "In" x) )/...

    Text Solution

    |

  12. Evaluate the following integrals : (b) int ( dx)/( x "In" x) ,

    Text Solution

    |

  13. Evaluate the following integrals : (c ) int ( xdx)/( sqrt( 3-x^4) ),

    Text Solution

    |

  14. Evaluate the following integrals : (d) int ( x^( n-1) )/( x^( 2n) + ...

    Text Solution

    |

  15. What is int (sin sqrtx)/(sqrtx) dx equal to ?

    Text Solution

    |

  16. Evaluate the following integrals : int ("In" x + (1)/( "In" x) ) (dx...

    Text Solution

    |

  17. Find the following integrals : (a) int x^(2) root( 3) ( 1-x) dx,

    Text Solution

    |

  18. Find the following integrals : (b) int ("In" x dx)/( x sqrt (1+ "In"...

    Text Solution

    |

  19. Find the following integrals : (c ) int cos^(5) x sqrt( sin x) dx,

    Text Solution

    |

  20. Find the following integrals : (d) int ( x^5)/( sqrt( 1-x^2) ) dx.

    Text Solution

    |