Home
Class 12
MATHS
I= int ( sin 2 x)/( 1+ sin^(2) x) dx....

`I= int ( sin 2 x)/( 1+ sin^(2) x) dx`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{\sin 2x}{1 + \sin^2 x} \, dx \), we will use substitution and integration techniques. Let's go through the steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \frac{\sin 2x}{1 + \sin^2 x} \, dx \] Recall that \( \sin 2x = 2 \sin x \cos x \). Thus, we can rewrite the integral as: \[ I = \int \frac{2 \sin x \cos x}{1 + \sin^2 x} \, dx \] ### Step 2: Use Substitution Let \( u = \sin x \). Then, the derivative \( du = \cos x \, dx \) or \( dx = \frac{du}{\cos x} \). We also note that \( \cos x = \sqrt{1 - u^2} \) (since \( \sin^2 x + \cos^2 x = 1 \)). Substituting these into the integral gives: \[ I = \int \frac{2u \sqrt{1 - u^2}}{1 + u^2} \cdot \frac{du}{\sqrt{1 - u^2}} \] This simplifies to: \[ I = 2 \int \frac{u}{1 + u^2} \, du \] ### Step 3: Integrate Now we can integrate: \[ I = 2 \int \frac{u}{1 + u^2} \, du \] Using the substitution \( v = 1 + u^2 \), we have \( dv = 2u \, du \) or \( du = \frac{dv}{2u} \). Thus: \[ I = 2 \cdot \frac{1}{2} \int \frac{1}{v} \, dv = \int \frac{1}{v} \, dv = \ln |v| + C = \ln |1 + u^2| + C \] ### Step 4: Back Substitute Now we substitute back \( u = \sin x \): \[ I = \ln |1 + \sin^2 x| + C \] ### Final Answer Thus, the final result of the integral is: \[ I = \ln(1 + \sin^2 x) + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS, BASIC METHODS OF INTEGRATION

    IA MARON|Exercise 4.3. Integration by Parts|28 Videos
  • INDEFINITE INTEGRALS, BASIC METHODS OF INTEGRATION

    IA MARON|Exercise 4.4. Reduction Formulas|2 Videos
  • INDEFINITE INTEGRALS, BASIC METHODS OF INTEGRATION

    IA MARON|Exercise 4.4. Reduction Formulas|2 Videos
  • IMPROPER INTEGRALS

    IA MARON|Exercise 8.4 ADDITIONAL PROBLEMS|1 Videos
  • INTRODUCTION OF MATHEMATICAL ANALYSIS

    IA MARON|Exercise Additional Problems|34 Videos

Similar Questions

Explore conceptually related problems

int (sin 2x)/(1+sin^2x)dx=

int (cos x - sin x)/(1 + sin 2x) dx

int(sin2x)/(1+sin^(2)x)dx=

int(sin2x )/(1+sin^(2)x)dx

int(sin x)/(1-sin^(2)x)dx

int(sin x)/(1-sin^(2)x)dx

int (sin2x) dx/(1+sin^4x)

" 4.(i) "int(sin x)/(1-sin^(2)x)dx

int(sin4x)/(1+sin^(4)2x)dx=

I= int(dx)/( sin^(2) x cos^(2) x)

IA MARON-INDEFINITE INTEGRALS, BASIC METHODS OF INTEGRATION-4.2. Integration by Substitution
  1. I= int ( x^2 + 3) /( sqrt ( 2x -5)^(3) ) dx.

    Text Solution

    |

  2. Evaluate: int(x^2-1)/((x^4+3x^2+1)tan^(-1)(x+1/x))dx

    Text Solution

    |

  3. I= int ( sqrt( alpha^(2) - x^(2) ) )/( x^4) dx.

    Text Solution

    |

  4. I= int ( dx)/( a^(2) sin^(2) x + b^(2) cos^(2) x) .

    Text Solution

    |

  5. I= int root(3) ( 1+ 3 sin x) cos x dx.

    Text Solution

    |

  6. I= int ( sin x dx)/( sqrt( cos x) ).

    Text Solution

    |

  7. I= int ( dx)/( ("arc" cos x)^(5) sqrt(1-x^2) ).

    Text Solution

    |

  8. I= int ( x^2 + 1) /( root( 3) ( x^(3) + 3x + 1) )d x.

    Text Solution

    |

  9. I= int ( sin 2 x)/( 1+ sin^(2) x) dx.

    Text Solution

    |

  10. I= int ( 1+ "In" x)/( 3+ x "In" x) dx.

    Text Solution

    |

  11. Evaluate the following integrals : (a) int ( root( 3) (1+ "In" x) )/...

    Text Solution

    |

  12. Evaluate the following integrals : (b) int ( dx)/( x "In" x) ,

    Text Solution

    |

  13. Evaluate the following integrals : (c ) int ( xdx)/( sqrt( 3-x^4) ),

    Text Solution

    |

  14. Evaluate the following integrals : (d) int ( x^( n-1) )/( x^( 2n) + ...

    Text Solution

    |

  15. What is int (sin sqrtx)/(sqrtx) dx equal to ?

    Text Solution

    |

  16. Evaluate the following integrals : int ("In" x + (1)/( "In" x) ) (dx...

    Text Solution

    |

  17. Find the following integrals : (a) int x^(2) root( 3) ( 1-x) dx,

    Text Solution

    |

  18. Find the following integrals : (b) int ("In" x dx)/( x sqrt (1+ "In"...

    Text Solution

    |

  19. Find the following integrals : (c ) int cos^(5) x sqrt( sin x) dx,

    Text Solution

    |

  20. Find the following integrals : (d) int ( x^5)/( sqrt( 1-x^2) ) dx.

    Text Solution

    |