Home
Class 12
MATHS
Evaluate the following integrals : int...

Evaluate the following integrals :
`int ("In" x + (1)/( "In" x) ) (dx)/( x)`.

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int \left( \ln x + \frac{1}{\ln x} \right) \frac{dx}{x} \] we can break this integral into two parts: \[ I = \int \frac{\ln x}{x} \, dx + \int \frac{1}{\ln x} \cdot \frac{dx}{x} \] ### Step 1: Evaluate the first integral For the first integral, we can use the substitution \( t = \ln x \). Then, we have: \[ dt = \frac{1}{x} \, dx \quad \Rightarrow \quad dx = x \, dt = e^t \, dt \] Substituting \( x = e^t \) into the integral gives: \[ \int \frac{\ln x}{x} \, dx = \int t \, dt \] Now, we can integrate \( t \): \[ \int t \, dt = \frac{t^2}{2} + C = \frac{(\ln x)^2}{2} + C \] ### Step 2: Evaluate the second integral Now, we evaluate the second integral: \[ \int \frac{1}{\ln x} \cdot \frac{dx}{x} \] Using the same substitution \( t = \ln x \), we have: \[ \int \frac{1}{\ln x} \cdot \frac{dx}{x} = \int \frac{1}{t} \, dt \] The integral of \( \frac{1}{t} \) is: \[ \int \frac{1}{t} \, dt = \ln |t| + C = \ln |\ln x| + C \] ### Step 3: Combine the results Now we can combine the results of both integrals: \[ I = \frac{(\ln x)^2}{2} + \ln |\ln x| + C \] ### Final Answer Thus, the final result of the integral is: \[ \int \left( \ln x + \frac{1}{\ln x} \right) \frac{dx}{x} = \frac{(\ln x)^2}{2} + \ln |\ln x| + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS, BASIC METHODS OF INTEGRATION

    IA MARON|Exercise 4.3. Integration by Parts|28 Videos
  • INDEFINITE INTEGRALS, BASIC METHODS OF INTEGRATION

    IA MARON|Exercise 4.4. Reduction Formulas|2 Videos
  • INDEFINITE INTEGRALS, BASIC METHODS OF INTEGRATION

    IA MARON|Exercise 4.4. Reduction Formulas|2 Videos
  • IMPROPER INTEGRALS

    IA MARON|Exercise 8.4 ADDITIONAL PROBLEMS|1 Videos
  • INTRODUCTION OF MATHEMATICAL ANALYSIS

    IA MARON|Exercise Additional Problems|34 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following integrals : (b) int ( dx)/( x "In" x) ,

Evaluate the following integrals : (a) int ( root( 3) (1+ "In" x) )/( x) dx ,

Evaluate the following Integrals : int (dx)/(1+x^(3))

Evaluate the following integrals: int (1-cos x)/(sin x) dx

Evaluate the following integrals: int(x)/((x+1)^(2))dx

Evaluate the following integrals: int (x)/(sqrt(x+1))dx

Evaluate the following integrals: int(x-(1)/(x))^(2)dx

Evaluate the following integrals: int(x-(1)/(x))^(2)dx

Evaluate the following integrals: inte^(sqrt(x))dx

Evaluate the following integrals int (x dx)/(9-16x^(4))

IA MARON-INDEFINITE INTEGRALS, BASIC METHODS OF INTEGRATION-4.2. Integration by Substitution
  1. I= int ( x^2 + 3) /( sqrt ( 2x -5)^(3) ) dx.

    Text Solution

    |

  2. Evaluate: int(x^2-1)/((x^4+3x^2+1)tan^(-1)(x+1/x))dx

    Text Solution

    |

  3. I= int ( sqrt( alpha^(2) - x^(2) ) )/( x^4) dx.

    Text Solution

    |

  4. I= int ( dx)/( a^(2) sin^(2) x + b^(2) cos^(2) x) .

    Text Solution

    |

  5. I= int root(3) ( 1+ 3 sin x) cos x dx.

    Text Solution

    |

  6. I= int ( sin x dx)/( sqrt( cos x) ).

    Text Solution

    |

  7. I= int ( dx)/( ("arc" cos x)^(5) sqrt(1-x^2) ).

    Text Solution

    |

  8. I= int ( x^2 + 1) /( root( 3) ( x^(3) + 3x + 1) )d x.

    Text Solution

    |

  9. I= int ( sin 2 x)/( 1+ sin^(2) x) dx.

    Text Solution

    |

  10. I= int ( 1+ "In" x)/( 3+ x "In" x) dx.

    Text Solution

    |

  11. Evaluate the following integrals : (a) int ( root( 3) (1+ "In" x) )/...

    Text Solution

    |

  12. Evaluate the following integrals : (b) int ( dx)/( x "In" x) ,

    Text Solution

    |

  13. Evaluate the following integrals : (c ) int ( xdx)/( sqrt( 3-x^4) ),

    Text Solution

    |

  14. Evaluate the following integrals : (d) int ( x^( n-1) )/( x^( 2n) + ...

    Text Solution

    |

  15. What is int (sin sqrtx)/(sqrtx) dx equal to ?

    Text Solution

    |

  16. Evaluate the following integrals : int ("In" x + (1)/( "In" x) ) (dx...

    Text Solution

    |

  17. Find the following integrals : (a) int x^(2) root( 3) ( 1-x) dx,

    Text Solution

    |

  18. Find the following integrals : (b) int ("In" x dx)/( x sqrt (1+ "In"...

    Text Solution

    |

  19. Find the following integrals : (c ) int cos^(5) x sqrt( sin x) dx,

    Text Solution

    |

  20. Find the following integrals : (d) int ( x^5)/( sqrt( 1-x^2) ) dx.

    Text Solution

    |