Home
Class 12
MATHS
int(1)/(x^(3))[logx^(x)]^(2)dx=......

`int(1)/(x^(3))[logx^(x)]^(2)dx=...`

A

`(x^(3))/(3)(logx)+x+c`

B

`(1)/(3)(logx)^(3)+c`

C

`3log(logx)+c`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    KUMAR PRAKASHAN|Exercise PRACTICE PAPER-7 (SECTION-A)|6 Videos
  • INTEGRALS

    KUMAR PRAKASHAN|Exercise PRACTICE PAPER-7 (SECTION-B)|4 Videos
  • INTEGRALS

    KUMAR PRAKASHAN|Exercise SOLUTIONS OF NCERT EXEMLAR PROBLEMS (Objective Type Questions)|15 Videos
  • DETERMINANTS

    KUMAR PRAKASHAN|Exercise Practice Paper-4 (Section-D)|2 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    KUMAR PRAKASHAN|Exercise PRACTICE PAPER - 2 (SECTION - D)|2 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following integrals : int_(1)^(3)(logx)/((x+1)^(2))dx

int (logx)/((1+logx)^(2))dx =....

Method of integration by parts : int[(1)/(logx)-(1)/((logx)^(2))]dx=.......

int(x-1)/((x+1)^(3))e^(x)dx=.......+c

int(1+x^(2))/(sqrt(1-x^(2)))dx=...

int(logx+(1)/(x^(2)))e^(x)dx=..........+c

int (5(x^(6)+1))/(x^(2)+1)dx=....

int(x^(2)+1)/(x(x^(2)-1))dx=....

int(x^(3)+5x^(2)-4)/(x^(2))dx