Home
Class 12
MATHS
int (dx)/(x log x log (logx))=......

`int (dx)/(x log x log (logx))=...`

A

`2log(logx)+c`

B

`log[log(logx)]+c`

C

`log(xlogx)+c`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    KUMAR PRAKASHAN|Exercise PRACTICE PAPER-7 (SECTION-A)|6 Videos
  • INTEGRALS

    KUMAR PRAKASHAN|Exercise PRACTICE PAPER-7 (SECTION-B)|4 Videos
  • INTEGRALS

    KUMAR PRAKASHAN|Exercise SOLUTIONS OF NCERT EXEMLAR PROBLEMS (Objective Type Questions)|15 Videos
  • DETERMINANTS

    KUMAR PRAKASHAN|Exercise Practice Paper-4 (Section-D)|2 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    KUMAR PRAKASHAN|Exercise PRACTICE PAPER - 2 (SECTION - D)|2 Videos

Similar Questions

Explore conceptually related problems

Integration by partial fraction : int(dx)/(x[(logx)^(2)+4log(x)-1)])=....

int(log|x|)/(x sqrt(1+log|x|))dx=...+c .

If int (f(x)dx)/(log sin x)= log sin x, then f(x)=....

int(x-2)/(x(2logx-x))dx=....

Find (dy)/(dx) : x= e^(cos 2t) and y= e^(sin 2t) show that, (dy)/(dx)= (-y log x)/(x log y)

x (dy)/(dx) + 2y = x^(2)log x

Differentiate the following with respect to x: log [log (log x^(5))]

inte^(2x)(log2x+(1)/(2x))dx=..........+c

(d)/(dx). ((1)/(log|x|)) = …….