Home
Class 12
MATHS
int(logx+(1)/(x^(2)))e^(x)dx=..........+...

`int(logx+(1)/(x^(2)))e^(x)dx=..........+c`

A

`e^(x)(logx+(1)/(x^(2)))`

B

`e^(x)(logx+(1)/(x))`

C

`e^(x)(logx-(1)/(x^(2)))`

D

`e^(x)(logx-(1)/(x))`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    KUMAR PRAKASHAN|Exercise PRACTICE PAPER-7 (SECTION-A)|6 Videos
  • INTEGRALS

    KUMAR PRAKASHAN|Exercise PRACTICE PAPER-7 (SECTION-B)|4 Videos
  • INTEGRALS

    KUMAR PRAKASHAN|Exercise SOLUTIONS OF NCERT EXEMLAR PROBLEMS (Objective Type Questions)|15 Videos
  • DETERMINANTS

    KUMAR PRAKASHAN|Exercise Practice Paper-4 (Section-D)|2 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    KUMAR PRAKASHAN|Exercise PRACTICE PAPER - 2 (SECTION - D)|2 Videos

Similar Questions

Explore conceptually related problems

int(x-1)/((x+1)^(3))e^(x)dx=.......+c

int ((x+3)/((x+4)^(2)))e^(x)dx=.....+C

int (logx)/((1+logx)^(2))dx =....

int(x^(2)+1)/(x(x^(2)-1))dx=....

inte^(2x)(log2x+(1)/(2x))dx=..........+c

int(1)/(e^(x)+1)dx=....

int(1)/((e^(x)+e^(-x))^(2))dx=.....

int(1)/(x^(3))[logx^(x)]^(2)dx=...

int(x^(6)-1)/(x^(2)+1)dx=....+c