Home
Class 12
MATHS
Fundamental theorem of definite integral...

Fundamental theorem of definite integral :
`f(x)=int_(1)^(x)sqrt(2-t^(2))dt` then real roots of the equation `x^(2)-f'(x)=0` are ……….

A

`pm1`

B

`pm(1)/(sqrt3)`

C

`pm(1)/(2)`

D

0 and 1

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    KUMAR PRAKASHAN|Exercise PRACTICE PAPER-7 (SECTION-A)|6 Videos
  • INTEGRALS

    KUMAR PRAKASHAN|Exercise PRACTICE PAPER-7 (SECTION-B)|4 Videos
  • INTEGRALS

    KUMAR PRAKASHAN|Exercise SOLUTIONS OF NCERT EXEMLAR PROBLEMS (Objective Type Questions)|15 Videos
  • DETERMINANTS

    KUMAR PRAKASHAN|Exercise Practice Paper-4 (Section-D)|2 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    KUMAR PRAKASHAN|Exercise PRACTICE PAPER - 2 (SECTION - D)|2 Videos

Similar Questions

Explore conceptually related problems

Fundamental theorem of definite integral : int_(-1)^(2)sqrt(5x+6)dx=........

Let f(x)=int_1^xsqrt(2-t^2)dtdot Then the real roots of the equation , x^2-f^(prime)(x)=0 are:

Fundamental theorem of definite integral : If int_(0)^(k)(dx)/(1+4x^(2))=(pi)/(8) then k =……..

Fundamental theorem of definite integral : f(x)=int_(2)^(x)(dt)/(sqrt(1+t^(4))) and g is a inverse function of f then g'(0) =………….

Fundamental theorem of definite integral : int_(a)^(b)(logx)/(x)dx=...... (where a binR^(+) )

Evaluate the definite integrals int_(0)^(1)(dx)/(sqrt(1+x^(2)))

Fundamental theorem of definite integral : int_(0)^(pi/4)(sin^(9)x)/(cos^(11)x)dx=........

Evaluate the definite integrals int_(1)^(2)(4x^(3)-5x^(2)+6x+9)dx

Fundamental theorem of definite integral : If int_(sinx)^(1)t^(2)f(t)dt=(1-sinx) then f((1)/(sqrt3))=........

KUMAR PRAKASHAN-INTEGRALS -MULTIPLE CHOICE QUESTIONS(MCQS)
  1. Fundamental theorem of definite integral : If I(n)=int(0)^(pi/4)tan^...

    Text Solution

    |

  2. Fundamental theorem of definite integral : f(x)=int(2)^(x)(dt)/(sqrt...

    Text Solution

    |

  3. Fundamental theorem of definite integral : f(x)=int(1)^(x)sqrt(2-t^(...

    Text Solution

    |

  4. Fundamental theorem of definite integral : If int(sinx)^(1)t^(2)f(t)...

    Text Solution

    |

  5. Fundamental theorem of definite integral : I=int(0)^(1)(sinx)/(sqrtx...

    Text Solution

    |

  6. Fundamental theorem of definite integral : (d)/(dx)(F(x))=(e^(sinx))...

    Text Solution

    |

  7. int(1)^(2)logxdx=..........

    Text Solution

    |

  8. Fundamental theorem of definite integral : If int(0)^(k)(dx)/(1+4x^(...

    Text Solution

    |

  9. int(3)^(5)(t^(2))/(t^(2)-4)dx=.............

    Text Solution

    |

  10. int(0)^(pi)e^(x)cos2xdx=.............

    Text Solution

    |

  11. Fundamental theorem of definite integral : int(-1)^(2)sqrt(5x+6)dx=....

    Text Solution

    |

  12. Fundamental theorem of definite integral : int(0)^(pi/4)(sin^(9)x)/(...

    Text Solution

    |

  13. Fundamental theorem of definite integral : int(0)^(pi)sqrt(1+4sin^(2...

    Text Solution

    |

  14. Fundamental theorem of definite integral : int(0)^(pi/4)tan^(100)xdx...

    Text Solution

    |

  15. Fundamental theorem of definite integral : int(a)^(b)(logx)/(x)dx=.....

    Text Solution

    |

  16. Fundamental theorem of definite integral : int(0)^(pi/2)(cos2x)/((si...

    Text Solution

    |

  17. int(0)^(5)sqrt(25-x^(2))dx=.............

    Text Solution

    |

  18. Evaluation of definite integrals by subsitiution and properties of its...

    Text Solution

    |

  19. Evaluation of definite integrals by subsitiution and properties of its...

    Text Solution

    |

  20. Evaluation of definite integrals by subsitiution and properties of its...

    Text Solution

    |