Home
Class 12
MATHS
Fundamental theorem of definite integral...

Fundamental theorem of definite integral :
`int_(-1)^(2)sqrt(5x+6)dx=........`

A

0

B

`(42)/(5)`

C

`(63)/(5)`

D

`(-3)/(5)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    KUMAR PRAKASHAN|Exercise PRACTICE PAPER-7 (SECTION-A)|6 Videos
  • INTEGRALS

    KUMAR PRAKASHAN|Exercise PRACTICE PAPER-7 (SECTION-B)|4 Videos
  • INTEGRALS

    KUMAR PRAKASHAN|Exercise SOLUTIONS OF NCERT EXEMLAR PROBLEMS (Objective Type Questions)|15 Videos
  • DETERMINANTS

    KUMAR PRAKASHAN|Exercise Practice Paper-4 (Section-D)|2 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    KUMAR PRAKASHAN|Exercise PRACTICE PAPER - 2 (SECTION - D)|2 Videos

Similar Questions

Explore conceptually related problems

Fundamental theorem of definite integral : int_(a)^(b)(logx)/(x)dx=...... (where a binR^(+) )

Fundamental theorem of definite integral : I=int_(0)^(1)(sinx)/(sqrtx)dx and J=int_(0)^(1)(cosx)/(sqrtx)dx then which of the following statement is true ?

Fundamental theorem of definite integral : f(x)=int_(1)^(x)sqrt(2-t^(2))dt then real roots of the equation x^(2)-f'(x)=0 are ……….

Fundamental theorem of definite integral : int_(0)^(pi)sqrt(1+4sin^(2)""(x)/(2)-4sin""(x)/(2))dx=......

Fundamental theorem of definite integral : If int_(sinx)^(1)t^(2)f(t)dt=(1-sinx) then f((1)/(sqrt3))=........

Fundamental theorem of definite integral : If int_(0)^(k)(dx)/(1+4x^(2))=(pi)/(8) then k =……..

Fundamental theorem of definite integral : f(x)=int_(2)^(x)(dt)/(sqrt(1+t^(4))) and g is a inverse function of f then g'(0) =………….

Fundamental theorem of definite integral : If I_(n)=int_(0)^(pi/4)tan^(n)dx then lim_(ntooo)n(I_(n)+I_(n+2))=.......

Fundamental theorem of definite integral : int_(0)^(pi/2)(cos2x)/((sinx+cosx)^(2))dx=...........

Fundamental theorem of definite integral : int_(0)^(pi/4)(sin^(9)x)/(cos^(11)x)dx=........

KUMAR PRAKASHAN-INTEGRALS -MULTIPLE CHOICE QUESTIONS(MCQS)
  1. int(3)^(5)(t^(2))/(t^(2)-4)dx=.............

    Text Solution

    |

  2. int(0)^(pi)e^(x)cos2xdx=.............

    Text Solution

    |

  3. Fundamental theorem of definite integral : int(-1)^(2)sqrt(5x+6)dx=....

    Text Solution

    |

  4. Fundamental theorem of definite integral : int(0)^(pi/4)(sin^(9)x)/(...

    Text Solution

    |

  5. Fundamental theorem of definite integral : int(0)^(pi)sqrt(1+4sin^(2...

    Text Solution

    |

  6. Fundamental theorem of definite integral : int(0)^(pi/4)tan^(100)xdx...

    Text Solution

    |

  7. Fundamental theorem of definite integral : int(a)^(b)(logx)/(x)dx=.....

    Text Solution

    |

  8. Fundamental theorem of definite integral : int(0)^(pi/2)(cos2x)/((si...

    Text Solution

    |

  9. int(0)^(5)sqrt(25-x^(2))dx=.............

    Text Solution

    |

  10. Evaluation of definite integrals by subsitiution and properties of its...

    Text Solution

    |

  11. Evaluation of definite integrals by subsitiution and properties of its...

    Text Solution

    |

  12. Evaluation of definite integrals by subsitiution and properties of its...

    Text Solution

    |

  13. Evaluation of definite integrals by subsitiution and properties of its...

    Text Solution

    |

  14. Evaluation of definite integrals by subsitiution and properties of its...

    Text Solution

    |

  15. Evaluation of definite integrals by subsitiution and properties of its...

    Text Solution

    |

  16. int(0)^(pi)|cosx|dx=.......... .

    Text Solution

    |

  17. Evaluate the following integrals. int(0)^(2)|x^(2)+2x-3|dx

    Text Solution

    |

  18. Evaluation of definite integrals by subsitiution and properties of its...

    Text Solution

    |

  19. Evaluation of definite integrals by subsitiution and properties of its...

    Text Solution

    |

  20. Evaluation of definite integrals by substitution and properties of its...

    Text Solution

    |