Home
Class 12
MATHS
Prove that sin ^(-1) x + cos^(-1) x=p...

Prove that ` sin ^(-1) x + cos^(-1) x=pi/2 , x in [-1,1]`

Text Solution

Verified by Experts

The correct Answer is:
`x= pi//2`
Promotional Banner

Topper's Solved these Questions

  • II PUC MATHEMATICS (ANNUAL EXAM QUESTIONS PAPER MARCH -2019)

    SUNSTAR PUBLICATION|Exercise PART-C|13 Videos
  • II PUC MATHEMATICS (ANNUAL EXAM QUESTIONS PAPER MARCH -2019)

    SUNSTAR PUBLICATION|Exercise PART-D|14 Videos
  • II PUC MATHEMATICS (ANNUAL EXAM QUESTIONS PAPER MARCH -2019)

    SUNSTAR PUBLICATION|Exercise PART-D|14 Videos
  • II PUC MATHEMATICS (ANNUAL EXAM QUESTION PAPER MARCH - 2015)

    SUNSTAR PUBLICATION|Exercise PART-E|4 Videos
  • II PUC MATHEMATICS ANNUAL EXAM QUESTION PAPER JULY -2018

    SUNSTAR PUBLICATION|Exercise PART-E|4 Videos

Similar Questions

Explore conceptually related problems

prove that 3sin^(-1)x=sin^(-1)(3x-4x^(3)), x in [(-1)/2,1/2]

Prove that 3cos^(-1)x=cos^(-1)(4x^(3)-3x)" "x in [1/2,1]

If sin ^(-1) x+cos ^(-1)(1-x)=0 then x=

If cos^(-1) x > sin^(-1) x , then :

If 4sin^(-1)x + cos^(-1)x = pi, then x equals

sin ^(-1) x=(pi)/(5) , then cos ^(-1) x=

Prove that tan^(-1)((cosx)/(1+sinx))=pi/4-x/2x in [-pi/2,pi/2]