Home
Class 12
MATHS
If A=[(1,2,3),(3,-2,1),(4,2,1)] then ...

If `A=[(1,2,3),(3,-2,1),(4,2,1)]` then show that `A^3-23A -40 I=0`.

Text Solution

Verified by Experts

The correct Answer is:
`=[(0,0,0),(0,0,0),(0,0,0)]=0`
Promotional Banner

Topper's Solved these Questions

  • II PUC MATHEMATICS (ANNUAL EXAM QUESTIONS PAPER MARCH -2019)

    SUNSTAR PUBLICATION|Exercise PART-C|13 Videos
  • II PUC MATHEMATICS (ANNUAL EXAM QUESTION PAPER MARCH - 2015)

    SUNSTAR PUBLICATION|Exercise PART-E|4 Videos
  • II PUC MATHEMATICS ANNUAL EXAM QUESTION PAPER JULY -2018

    SUNSTAR PUBLICATION|Exercise PART-E|4 Videos

Similar Questions

Explore conceptually related problems

If A=[{:(,1,2,3),(,3,-2,1),(,4,2,1):}] then show that A^(3)-23A-40I=0

If A= {:[( 1,0,1),(0,1,2),(0,0,4)]:} ,then show that |3A| =27|A|

If A=[(-2,3),(-1,1)] then A^(3) is equal to

If A=[(1,-2,3),(-4,2,5)] and B=[(2,3),(4,5),(2,1)] , then find AB, BA. Show that AB ne BA .

If A=[(3,1),(-1,2)] , show that A^(2)-5A+7I=0 .

If A=[[3,-3,4],[2,-3,4],[0,-1,1]] , then

If A = [(1,0,2),(0,2,1),(2,0,3)] , prove that A^(3) -6A^(2) + 7A + 2I = 0 .

Solve the following equations by matrix method. For the matrix A = [(1,1,1),(1,2,-3),(2,-1,3)] . Show that A^(3) - 6A^(2) + 5A + 11 I = 0 . Hence, find A^(-1) .

If A= [(2,3),(4,6)], " then " A^(-1) =