Home
Class 12
MATHS
Prove that int(0 )^(a) f (x) dx = in...

Prove that ` int_(0 )^(a) f (x) dx = int_(0)^(a) f (a -x) dx ` hence evaluate ` int_(0)^(pi/2) ( cos^5 x)/( cos^2 x+ sinn ^5 x) dx `

Promotional Banner

Topper's Solved these Questions

  • II PUC MATHEMATICS (ANNUAL EXAM QUESTIONS PAPER MARCH -2019)

    SUNSTAR PUBLICATION|Exercise PART-C|13 Videos
  • II PUC MATHEMATICS (ANNUAL EXAM QUESTION PAPER MARCH - 2015)

    SUNSTAR PUBLICATION|Exercise PART-E|4 Videos
  • II PUC MATHEMATICS ANNUAL EXAM QUESTION PAPER JULY -2018

    SUNSTAR PUBLICATION|Exercise PART-E|4 Videos

Similar Questions

Explore conceptually related problems

Prove that int_(0)^(a)(x)dx = int_(0)^(a) f(a-x)dx and hence evaluate int_(0)^(pi/4)log (1 + tan x)dx .

int_(0)^(pi//2) (sin x)/(1 +cos^2) dx .

Evaluate : int_(0)^(pi//2) ( sin x)/(1 +cos ^2 x) dx

Prove that int_(0)^(a) f(x) dx = int_(0)^(a) f(a - x)dx and hence evaluate the following: (b) int_(0)^(pi/2) cos^(2) xdx .

int_(0)^(pi//2) cos 2x dx .

Prove that int_(0)^(2a) f(x) dx = 2int_(0)^(a) f(x) dx when f(2a -x) = f(x) and hence evaluate int_(0)^(pi) |cos x| dx .

Prove that int_(a)^(b) f(x)dx= int_(a)^(b) f (a+b-x)dx" hence evaluate " int_(0)^(pi/4) log(1+tan x)dx .

Prove that int_(0)^(a)f(x)dx=int_(0)^(a)f(a-x)dx and hence evaluate int_(0)^(pi//2)(2log sin x-log sin2x)dx .

Evaluate int_(0)^(2 pi ) cos^(5) x dx

Evaluate int _(0)^(pi//2)cos x dx